The Basophil IL-18 Receptor Precisely Regulates the Host Immune Response and Malaria-Induced Intestinal Permeability and Alters Parasite Transmission to Mosquitoes without Effect on Gametocytemia.
Erinn L Donnelly, Nora Céspedes, Gretchen Hansten, Delaney Wagers, Anna M Briggs, Casey Lowder, Joseph Schauer, Lori Haapanen, Judy Van de Water, Shirley Luckhart
{"title":"The Basophil IL-18 Receptor Precisely Regulates the Host Immune Response and Malaria-Induced Intestinal Permeability and Alters Parasite Transmission to Mosquitoes without Effect on Gametocytemia.","authors":"Erinn L Donnelly, Nora Céspedes, Gretchen Hansten, Delaney Wagers, Anna M Briggs, Casey Lowder, Joseph Schauer, Lori Haapanen, Judy Van de Water, Shirley Luckhart","doi":"10.4049/immunohorizons.2200057","DOIUrl":null,"url":null,"abstract":"<p><p>We have recently demonstrated that basophils are protective against intestinal permeability during malaria and contribute to reduced parasite transmission to mosquitoes. Given that IL-18 is an early cytokine/alarmin in malaria and has been shown to activate basophils, we sought to determine the role of the basophil IL-18R in this protective phenotype. To address this, we infected control [<i>IL18r</i> <sup>flox/flox</sup> or basoIL-18R (+)] mice and mice with basophils lacking the IL-18R [<i>IL18r</i> <sup>flox/flox</sup> × Basoph8 or basoIL-18R (-)] with <i>Plasmodium yoelii yoelii</i> 17XNL, a nonlethal strain of mouse malaria. Postinfection (PI), intestinal permeability, ileal mastocytosis, bacteremia, and levels of ileal and plasma cytokines and chemokines were measured through 10 d PI. BasoIL-18R (-) mice exhibited greater intestinal permeability relative to basoIL-18R (+) mice, along with increased plasma levels of proinflammatory cytokines at a single time point PI, day 4 PI, a pattern not observed in basoIL-18R (+) mice. Surprisingly, mosquitoes fed on basoIL-18R (-) mice became infected less frequently than mosquitoes fed on basoIL-18R (+) mice, with no difference in gametocytemia, a pattern that was distinct from that observed previously with basophil-depleted mice. These findings suggest that early basophil-dependent protection of the intestinal barrier in malaria is mediated by IL-18, and that basophil IL-18R-dependent signaling differentially regulates the inflammatory response to infection and parasite transmission.</p>","PeriodicalId":13448,"journal":{"name":"ImmunoHorizons","volume":"6 8","pages":"630-641"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9977167/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ImmunoHorizons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4049/immunohorizons.2200057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We have recently demonstrated that basophils are protective against intestinal permeability during malaria and contribute to reduced parasite transmission to mosquitoes. Given that IL-18 is an early cytokine/alarmin in malaria and has been shown to activate basophils, we sought to determine the role of the basophil IL-18R in this protective phenotype. To address this, we infected control [IL18rflox/flox or basoIL-18R (+)] mice and mice with basophils lacking the IL-18R [IL18rflox/flox × Basoph8 or basoIL-18R (-)] with Plasmodium yoelii yoelii 17XNL, a nonlethal strain of mouse malaria. Postinfection (PI), intestinal permeability, ileal mastocytosis, bacteremia, and levels of ileal and plasma cytokines and chemokines were measured through 10 d PI. BasoIL-18R (-) mice exhibited greater intestinal permeability relative to basoIL-18R (+) mice, along with increased plasma levels of proinflammatory cytokines at a single time point PI, day 4 PI, a pattern not observed in basoIL-18R (+) mice. Surprisingly, mosquitoes fed on basoIL-18R (-) mice became infected less frequently than mosquitoes fed on basoIL-18R (+) mice, with no difference in gametocytemia, a pattern that was distinct from that observed previously with basophil-depleted mice. These findings suggest that early basophil-dependent protection of the intestinal barrier in malaria is mediated by IL-18, and that basophil IL-18R-dependent signaling differentially regulates the inflammatory response to infection and parasite transmission.