Additional value of chest CT AI-based quantification of lung involvement in predicting death and ICU admission for COVID-19 patients

Eloise Galzin , Laurent Roche , Anna Vlachomitrou , Olivier Nempont , Heike Carolus , Alexander Schmidt-Richberg , Peng Jin , Pedro Rodrigues , Tobias Klinder , Jean-Christophe Richard , Karim Tazarourte , Marion Douplat , Alain Sigal , Maude Bouscambert-Duchamp , Salim Aymeric Si-Mohamed , Sylvain Gouttard , Adeline Mansuy , François Talbot , Jean-Baptiste Pialat , Olivier Rouvière , Loic Boussel
{"title":"Additional value of chest CT AI-based quantification of lung involvement in predicting death and ICU admission for COVID-19 patients","authors":"Eloise Galzin ,&nbsp;Laurent Roche ,&nbsp;Anna Vlachomitrou ,&nbsp;Olivier Nempont ,&nbsp;Heike Carolus ,&nbsp;Alexander Schmidt-Richberg ,&nbsp;Peng Jin ,&nbsp;Pedro Rodrigues ,&nbsp;Tobias Klinder ,&nbsp;Jean-Christophe Richard ,&nbsp;Karim Tazarourte ,&nbsp;Marion Douplat ,&nbsp;Alain Sigal ,&nbsp;Maude Bouscambert-Duchamp ,&nbsp;Salim Aymeric Si-Mohamed ,&nbsp;Sylvain Gouttard ,&nbsp;Adeline Mansuy ,&nbsp;François Talbot ,&nbsp;Jean-Baptiste Pialat ,&nbsp;Olivier Rouvière ,&nbsp;Loic Boussel","doi":"10.1016/j.redii.2022.100018","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p>We evaluated the contribution of lung lesion quantification on chest CT using a clinical Artificial Intelligence (AI) software in predicting death and intensive care units (ICU) admission for COVID-19 patients.</p></div><div><h3>Methods</h3><p>For 349 patients with positive COVID-19-PCR test that underwent a chest CT scan at admittance or during hospitalization, we applied the AI for lung and lung lesion segmentation to obtain lesion volume (LV), and LV/Total Lung Volume (TLV) ratio. ROC analysis was used to extract the best CT criterion in predicting death and ICU admission. Two prognostic models using multivariate logistic regressions were constructed to predict each outcome and were compared using AUC values. The first model (“Clinical”) was based on patients’ characteristics and clinical symptoms only. The second model (“Clinical+LV/TLV”) included also the best CT criterion.</p></div><div><h3>Results</h3><p>LV/TLV ratio demonstrated best performance for both outcomes; AUC of 67.8% (95% CI: 59.5 - 76.1) and 81.1% (95% CI: 75.7 - 86.5) respectively. Regarding death prediction, AUC values were 76.2% (95% CI: 69.9 - 82.6) and 79.9% (95%IC: 74.4 - 85.5) for the “Clinical” and the “Clinical+LV/TLV” models respectively, showing significant performance increase (+ 3.7%; p-value&lt;0.001) when adding LV/TLV ratio. Similarly, for ICU admission prediction, AUC values were 74.9% (IC 95%: 69.2 - 80.6) and 84.8% (IC 95%: 80.4 - 89.2) respectively corresponding to significant performance increase (+ 10%: p-value&lt;0.001).</p></div><div><h3>Conclusions</h3><p>Using a clinical AI software to quantify the COVID-19 lung involvement on chest CT, combined with clinical variables, allows better prediction of death and ICU admission.</p></div>","PeriodicalId":74676,"journal":{"name":"Research in diagnostic and interventional imaging","volume":"4 ","pages":"Article 100018"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9716289/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in diagnostic and interventional imaging","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772652522000187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives

We evaluated the contribution of lung lesion quantification on chest CT using a clinical Artificial Intelligence (AI) software in predicting death and intensive care units (ICU) admission for COVID-19 patients.

Methods

For 349 patients with positive COVID-19-PCR test that underwent a chest CT scan at admittance or during hospitalization, we applied the AI for lung and lung lesion segmentation to obtain lesion volume (LV), and LV/Total Lung Volume (TLV) ratio. ROC analysis was used to extract the best CT criterion in predicting death and ICU admission. Two prognostic models using multivariate logistic regressions were constructed to predict each outcome and were compared using AUC values. The first model (“Clinical”) was based on patients’ characteristics and clinical symptoms only. The second model (“Clinical+LV/TLV”) included also the best CT criterion.

Results

LV/TLV ratio demonstrated best performance for both outcomes; AUC of 67.8% (95% CI: 59.5 - 76.1) and 81.1% (95% CI: 75.7 - 86.5) respectively. Regarding death prediction, AUC values were 76.2% (95% CI: 69.9 - 82.6) and 79.9% (95%IC: 74.4 - 85.5) for the “Clinical” and the “Clinical+LV/TLV” models respectively, showing significant performance increase (+ 3.7%; p-value<0.001) when adding LV/TLV ratio. Similarly, for ICU admission prediction, AUC values were 74.9% (IC 95%: 69.2 - 80.6) and 84.8% (IC 95%: 80.4 - 89.2) respectively corresponding to significant performance increase (+ 10%: p-value<0.001).

Conclusions

Using a clinical AI software to quantify the COVID-19 lung involvement on chest CT, combined with clinical variables, allows better prediction of death and ICU admission.

Abstract Image

Abstract Image

Abstract Image

基于胸部CT ai的肺受累量化在预测COVID-19患者死亡和ICU入院中的附加价值
目的应用临床人工智能(AI)软件评估胸部CT肺病变量化在预测COVID-19患者死亡和重症监护病房(ICU)入住中的作用。方法对入院或住院期间行胸部CT扫描的349例COVID-19-PCR检测阳性患者,应用AI进行肺及肺病变分割,获得病灶体积(LV)及LV/总肺体积(TLV)比。采用ROC分析提取预测死亡和ICU入院的最佳CT标准。构建了两个使用多变量逻辑回归的预后模型来预测每个结果,并使用AUC值进行比较。第一个模型(“临床”)仅基于患者的特征和临床症状。第二种模式(“临床+LV/TLV”)也包括最佳CT标准。结果slv /TLV比值在两种结果中均表现最佳;AUC分别为67.8% (95% CI: 59.5 - 76.1)和81.1% (95% CI: 75.7 - 86.5)。在死亡预测方面,“临床”和“临床+LV/TLV”模型的AUC值分别为76.2% (95% CI: 69.9 ~ 82.6)和79.9% (95% ic: 74.4 ~ 85.5),性能显著提高(+ 3.7%;p值<0.001)。同样,对于ICU入院预测,AUC值分别为74.9% (IC 95%: 69.2 - 80.6)和84.8% (IC 95%: 80.4 - 89.2),对应于显著的性能提升(+ 10%:p值<0.001)。结论应用临床人工智能软件量化胸部CT新冠肺炎肺部受累情况,结合临床变量,可以更好地预测死亡和ICU入院情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信