Enhancing convolutional neural network predictions of electrocardiograms with left ventricular dysfunction using a novel sub-waveform representation

IF 2.6 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Hossein Honarvar PhD , Chirag Agarwal PhD , Sulaiman Somani MD , Akhil Vaid MD , Joshua Lampert MD , Tingyi Wanyan PhD , Vivek Y. Reddy MD , Girish N. Nadkarni MD , Riccardo Miotto PhD , Marinka Zitnik PhD , Fei Wang PhD , Benjamin S. Glicksberg PhD
{"title":"Enhancing convolutional neural network predictions of electrocardiograms with left ventricular dysfunction using a novel sub-waveform representation","authors":"Hossein Honarvar PhD ,&nbsp;Chirag Agarwal PhD ,&nbsp;Sulaiman Somani MD ,&nbsp;Akhil Vaid MD ,&nbsp;Joshua Lampert MD ,&nbsp;Tingyi Wanyan PhD ,&nbsp;Vivek Y. Reddy MD ,&nbsp;Girish N. Nadkarni MD ,&nbsp;Riccardo Miotto PhD ,&nbsp;Marinka Zitnik PhD ,&nbsp;Fei Wang PhD ,&nbsp;Benjamin S. Glicksberg PhD","doi":"10.1016/j.cvdhj.2022.07.074","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Electrocardiogram (ECG) deep learning (DL) has promise to improve the outcomes of patients with cardiovascular abnormalities. In ECG DL, researchers often use convolutional neural networks (CNNs) and traditionally use the full duration of raw ECG waveforms that create redundancies in feature learning and result in inaccurate predictions with large uncertainties.</p></div><div><h3>Objective</h3><p>For enhancing these predictions, we introduced a sub-waveform representation that leverages the rhythmic pattern of ECG waveforms (data-centric approach) rather than changing the CNN architecture (model-centric approach).</p></div><div><h3>Results</h3><p>We applied the proposed representation to a population with 92,446 patients to identify left ventricular dysfunction. We found that the sub-waveform representation increases the performance metrics compared to the full-waveform representation. We observed a 2% increase for area under the receiver operating characteristic curve and 10% increase for area under the precision-recall curve. We also carefully examined three reliability components of explainability, interpretability, and fairness. We provided an explanation for enhancements obtained by heartbeat alignment mechanism. By developing a new scoring system, we interpreted the clinical relevance of ECG features and showed that sub-waveform representation further pushes the scores towards clinical predictions. Finally, we showed that the new representation significantly reduces prediction uncertainties within subgroups that contributes to individual fairness.</p></div><div><h3>Conclusion</h3><p>We expect that this added control over the granularity of ECG data will improve the DL modeling for new artificial intelligence technologies in the cardiovascular space.</p></div>","PeriodicalId":72527,"journal":{"name":"Cardiovascular digital health journal","volume":"3 5","pages":"Pages 220-231"},"PeriodicalIF":2.6000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f4/42/main.PMC9596304.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular digital health journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666693622001335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 2

Abstract

Background

Electrocardiogram (ECG) deep learning (DL) has promise to improve the outcomes of patients with cardiovascular abnormalities. In ECG DL, researchers often use convolutional neural networks (CNNs) and traditionally use the full duration of raw ECG waveforms that create redundancies in feature learning and result in inaccurate predictions with large uncertainties.

Objective

For enhancing these predictions, we introduced a sub-waveform representation that leverages the rhythmic pattern of ECG waveforms (data-centric approach) rather than changing the CNN architecture (model-centric approach).

Results

We applied the proposed representation to a population with 92,446 patients to identify left ventricular dysfunction. We found that the sub-waveform representation increases the performance metrics compared to the full-waveform representation. We observed a 2% increase for area under the receiver operating characteristic curve and 10% increase for area under the precision-recall curve. We also carefully examined three reliability components of explainability, interpretability, and fairness. We provided an explanation for enhancements obtained by heartbeat alignment mechanism. By developing a new scoring system, we interpreted the clinical relevance of ECG features and showed that sub-waveform representation further pushes the scores towards clinical predictions. Finally, we showed that the new representation significantly reduces prediction uncertainties within subgroups that contributes to individual fairness.

Conclusion

We expect that this added control over the granularity of ECG data will improve the DL modeling for new artificial intelligence technologies in the cardiovascular space.

Abstract Image

Abstract Image

Abstract Image

使用一种新的子波形表示增强卷积神经网络对左心室功能障碍心电图的预测
背景心电图(ECG)深度学习(DL)有望改善心血管异常患者的预后。在ECG DL中,研究人员经常使用卷积神经网络(cnn),传统上使用原始ECG波形的整个持续时间,这在特征学习中产生冗余,导致预测不准确,具有很大的不确定性。为了增强这些预测,我们引入了一种子波形表示,该表示利用了ECG波形的节律模式(以数据为中心的方法),而不是改变CNN架构(以模型为中心的方法)。结果:我们将提出的代表性应用于92,446例患者中,以确定左心室功能障碍。我们发现,与全波形表示相比,子波形表示增加了性能指标。我们观察到接收者工作特性曲线下的面积增加了2%,精确度-召回曲线下的面积增加了10%。我们还仔细研究了可解释性、可解释性和公平性这三个可靠性组成部分。我们对通过心跳对齐机制获得的增强提供了解释。通过开发一种新的评分系统,我们解释了心电图特征的临床相关性,并表明亚波形表示进一步推动了评分向临床预测的方向发展。最后,我们发现新的表征显著降低了子群体内的预测不确定性,这有助于个体公平性。我们期望这种对心电数据粒度的额外控制将改善心血管领域新人工智能技术的深度学习建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cardiovascular digital health journal
Cardiovascular digital health journal Cardiology and Cardiovascular Medicine
CiteScore
4.20
自引率
0.00%
发文量
0
审稿时长
58 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信