Hao Yang, Wensheng Sun, Tao Bi, Jiahao Sun, Zhihua Lu, Jie Li, Honglong Wei
{"title":"ZNF8-miR-552-5p Axis Modulates ACSL4-Mediated Ferroptosis in Hepatocellular Carcinoma.","authors":"Hao Yang, Wensheng Sun, Tao Bi, Jiahao Sun, Zhihua Lu, Jie Li, Honglong Wei","doi":"10.1089/dna.2022.0582","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is a common malignancy that is associated with poor prognosis in humans. Despite the development of targeted drugs, overall survival remains a significant challenge, and new therapeutic strategies are urgently needed. The aim of this study was to investigate the function of miR-552-5p in ferroptosis and the underlying mechanism, as well as to explore novel strategies for HCC treatment. CCK8 assay results showed that the viability of Huh-7 and Hep3B cells decreased significantly after transfection of the miR-552-5p inhibitor. In addition, we found that glutathione levels were depleted, intracellular Fe<sup>2+</sup> levels were elevated, and the mean fluorescence intensity of C11-BODIPY was increased after miR-552-5p transfection. Transmission electron microscopy revealed that mitochondria became smaller and mitochondrial membrane intensity was increased in the inhibitor+RSL3 group. Mechanistically, a dual-luciferase reporter assay confirmed that miR-552-5p interacted with the 3' untranslated region (3' UTR) of acyl-CoA synthetase long-chain family member 4 (<i>ACSL4</i>) mRNA. qPCR and Western blotting results verified that miR-552-5p negatively regulated ACSL4 expression. In addition, we found that overexpression of ZNF8, which is a transcription factor, reduced intracellular miR-552-5p levels and enhanced sensitivity to ferroptosis. miR-552-5p reduces sensitivity to ferroptosis by targeting the 3' UTR of <i>ACSL4</i> in HCC. The ZNF8-miR-552-5p-ACSL4 axis is involved in regulation of ferroptosis in HCC, and these findings may provide a new therapeutic target for treatment of HCC.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/dna.2022.0582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy that is associated with poor prognosis in humans. Despite the development of targeted drugs, overall survival remains a significant challenge, and new therapeutic strategies are urgently needed. The aim of this study was to investigate the function of miR-552-5p in ferroptosis and the underlying mechanism, as well as to explore novel strategies for HCC treatment. CCK8 assay results showed that the viability of Huh-7 and Hep3B cells decreased significantly after transfection of the miR-552-5p inhibitor. In addition, we found that glutathione levels were depleted, intracellular Fe2+ levels were elevated, and the mean fluorescence intensity of C11-BODIPY was increased after miR-552-5p transfection. Transmission electron microscopy revealed that mitochondria became smaller and mitochondrial membrane intensity was increased in the inhibitor+RSL3 group. Mechanistically, a dual-luciferase reporter assay confirmed that miR-552-5p interacted with the 3' untranslated region (3' UTR) of acyl-CoA synthetase long-chain family member 4 (ACSL4) mRNA. qPCR and Western blotting results verified that miR-552-5p negatively regulated ACSL4 expression. In addition, we found that overexpression of ZNF8, which is a transcription factor, reduced intracellular miR-552-5p levels and enhanced sensitivity to ferroptosis. miR-552-5p reduces sensitivity to ferroptosis by targeting the 3' UTR of ACSL4 in HCC. The ZNF8-miR-552-5p-ACSL4 axis is involved in regulation of ferroptosis in HCC, and these findings may provide a new therapeutic target for treatment of HCC.