Zaire B Medina-Moctezuma, Cyndi G Hernández-Coronado, Lydia Marín-López, Adrián Guzmán, David González-Aretia, Carlos G Gutiérrez, Ana Ma Rosales-Torres
{"title":"Sphingosine-1-phosphate regulation of luteinising hormone-induced steroidogenesis and proliferation of bovine theca cells <i>in vitro</i>.","authors":"Zaire B Medina-Moctezuma, Cyndi G Hernández-Coronado, Lydia Marín-López, Adrián Guzmán, David González-Aretia, Carlos G Gutiérrez, Ana Ma Rosales-Torres","doi":"10.1071/RD22289","DOIUrl":null,"url":null,"abstract":"<p><strong>Context: </strong>Sphingosine-1-phosphate (S1P) is synthesised by follicle granulosa cells under the influence of follicle-stimulating hormone and seems to be necessary for the biological effects of this gonadotrophin.</p><p><strong>Aims: </strong>To determine if luteinising hormone (LH) increases S1P production and if this sphingolipid, either induced by LH or added to culture media, regulates steroidogenesis and cell viability in bovine theca cells.</p><p><strong>Methods: </strong>We used bovine theca cell cultures treated with: S1P (0, 0.1, 1 and 10μM; Experiment 1), LH (0, 0.02, 0.2 and 2ngmL-1 ; Experiment 2) and LH (0.02ngmL-1 ) plus a sphingosine kinase inhibitor (SKI-178; 0, 5 and 10μM; Experiment 3).</p><p><strong>Key results: </strong>Treatment with S1P did not affect (P >0.05) theca cell viability or their ability to produce progesterone and testosterone. LH (0.02ngmL-1 ) increased (P <0.05) S1P production, and stimulated the expression of phosphorylated sphingosine kinase-1 (pSPHK1). However, the inhibition of SPHK1, by a specific SPHK1 inhibitor (SKI-178), reduced (P <0.05) cell viability and progesterone secretion. Additionally, the use of SKI-178 increased theca cell testosterone production (P<0.05).</p><p><strong>Conclusions: </strong>S1P added to culture media did not affect cell viability or steroid synthesis. However, LH stimulated the production of S1P, by increasing phosphorylation of SPHK1 in theca cells. This intracellular S1P was inhibitory on testosterone production but augmented progesterone and viable cell number.</p><p><strong>Implications: </strong>These results suggest a novel signalling pathway for LH in theca cells and underline the importance of S1P in the regulation of steroid synthesis.</p>","PeriodicalId":20932,"journal":{"name":"Reproduction, fertility, and development","volume":"35 9","pages":"518-526"},"PeriodicalIF":1.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction, fertility, and development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/RD22289","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Context: Sphingosine-1-phosphate (S1P) is synthesised by follicle granulosa cells under the influence of follicle-stimulating hormone and seems to be necessary for the biological effects of this gonadotrophin.
Aims: To determine if luteinising hormone (LH) increases S1P production and if this sphingolipid, either induced by LH or added to culture media, regulates steroidogenesis and cell viability in bovine theca cells.
Methods: We used bovine theca cell cultures treated with: S1P (0, 0.1, 1 and 10μM; Experiment 1), LH (0, 0.02, 0.2 and 2ngmL-1 ; Experiment 2) and LH (0.02ngmL-1 ) plus a sphingosine kinase inhibitor (SKI-178; 0, 5 and 10μM; Experiment 3).
Key results: Treatment with S1P did not affect (P >0.05) theca cell viability or their ability to produce progesterone and testosterone. LH (0.02ngmL-1 ) increased (P <0.05) S1P production, and stimulated the expression of phosphorylated sphingosine kinase-1 (pSPHK1). However, the inhibition of SPHK1, by a specific SPHK1 inhibitor (SKI-178), reduced (P <0.05) cell viability and progesterone secretion. Additionally, the use of SKI-178 increased theca cell testosterone production (P<0.05).
Conclusions: S1P added to culture media did not affect cell viability or steroid synthesis. However, LH stimulated the production of S1P, by increasing phosphorylation of SPHK1 in theca cells. This intracellular S1P was inhibitory on testosterone production but augmented progesterone and viable cell number.
Implications: These results suggest a novel signalling pathway for LH in theca cells and underline the importance of S1P in the regulation of steroid synthesis.
期刊介绍:
Reproduction, Fertility and Development is an international journal for the publication of original and significant contributions on vertebrate reproductive and developmental biology. Subject areas include, but are not limited to: physiology, biochemistry, cell and molecular biology, endocrinology, genetics and epigenetics, behaviour, immunology and the development of reproductive technologies in humans, livestock and wildlife, and in pest management.
Reproduction, Fertility and Development is a valuable resource for research scientists working in industry or academia on reproductive and developmental biology, clinicians and veterinarians interested in the basic science underlying their disciplines, and students.
Reproduction, Fertility and Development is the official journal of the International Embryo Technology Society and the Society for Reproductive Biology.
Reproduction, Fertility and Development is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.