Francisco Q Gonçalves, Pedro Valada, Marco Matos, Rodrigo A Cunha, Angelo R Tomé
{"title":"Feedback facilitation by adenosine A<sub>2A</sub> receptors of ATP release from mouse hippocampal nerve terminals.","authors":"Francisco Q Gonçalves, Pedro Valada, Marco Matos, Rodrigo A Cunha, Angelo R Tomé","doi":"10.1007/s11302-023-09937-y","DOIUrl":null,"url":null,"abstract":"<p><p>The adenosine modulation system is mostly composed by inhibitory A<sub>1</sub> receptors (A<sub>1</sub>R) and the less abundant facilitatory A<sub>2A</sub> receptors (A<sub>2A</sub>R), the latter selectively engaged at high frequency stimulation associated with synaptic plasticity processes in the hippocampus. A<sub>2A</sub>R are activated by adenosine originated from extracellular ATP through ecto-5'-nucleotidase or CD73-mediated catabolism. Using hippocampal synaptosomes, we now investigated how adenosine receptors modulate the synaptic release of ATP. The A<sub>2A</sub>R agonist CGS21680 (10-100 nM) enhanced the K<sup>+</sup>-evoked release of ATP, whereas both SCH58261 and the CD73 inhibitor α,β-methylene ADP (100 μM) decreased ATP release; all these effects were abolished in forebrain A<sub>2A</sub>R knockout mice. The A<sub>1</sub>R agonist CPA (10-100 nM) inhibited ATP release, whereas the A<sub>1</sub>R antagonist DPCPX (100 nM) was devoid of effects. The presence of SCH58261 potentiated CPA-mediated ATP release and uncovered a facilitatory effect of DPCPX. Overall, these findings indicate that ATP release is predominantly controlled by A<sub>2A</sub>R, which are involved in an apparent feedback loop of A<sub>2A</sub>R-mediated increased ATP release together with dampening of A<sub>1</sub>R-mediated inhibition. This study is a tribute to María Teresa Miras-Portugal.</p>","PeriodicalId":20952,"journal":{"name":"Purinergic Signalling","volume":" ","pages":"247-255"},"PeriodicalIF":3.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11189372/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Purinergic Signalling","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11302-023-09937-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The adenosine modulation system is mostly composed by inhibitory A1 receptors (A1R) and the less abundant facilitatory A2A receptors (A2AR), the latter selectively engaged at high frequency stimulation associated with synaptic plasticity processes in the hippocampus. A2AR are activated by adenosine originated from extracellular ATP through ecto-5'-nucleotidase or CD73-mediated catabolism. Using hippocampal synaptosomes, we now investigated how adenosine receptors modulate the synaptic release of ATP. The A2AR agonist CGS21680 (10-100 nM) enhanced the K+-evoked release of ATP, whereas both SCH58261 and the CD73 inhibitor α,β-methylene ADP (100 μM) decreased ATP release; all these effects were abolished in forebrain A2AR knockout mice. The A1R agonist CPA (10-100 nM) inhibited ATP release, whereas the A1R antagonist DPCPX (100 nM) was devoid of effects. The presence of SCH58261 potentiated CPA-mediated ATP release and uncovered a facilitatory effect of DPCPX. Overall, these findings indicate that ATP release is predominantly controlled by A2AR, which are involved in an apparent feedback loop of A2AR-mediated increased ATP release together with dampening of A1R-mediated inhibition. This study is a tribute to María Teresa Miras-Portugal.
期刊介绍:
Nucleotides and nucleosides are primitive biological molecules that were utilized early in evolution both as intracellular energy sources and as extracellular signalling molecules. ATP was first identified as a neurotransmitter and later as a co-transmitter with all the established neurotransmitters in both peripheral and central nervous systems. Four subtypes of P1 (adenosine) receptors, 7 subtypes of P2X ion channel receptors and 8 subtypes of P2Y G protein-coupled receptors have currently been identified. Since P2 receptors were first cloned in the early 1990’s, there is clear evidence for the widespread distribution of both P1 and P2 receptor subtypes in neuronal and non-neuronal cells, including glial, immune, bone, muscle, endothelial, epithelial and endocrine cells.