MicroRNA-126 Regulates Thrombosis Through Endothelial Progenitor Cells.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Qian Xiao, Dan Wang, Yingda Sheng, Jing Huang, Xiaoqin Ha
{"title":"MicroRNA-126 Regulates Thrombosis Through Endothelial Progenitor Cells.","authors":"Qian Xiao,&nbsp;Dan Wang,&nbsp;Yingda Sheng,&nbsp;Jing Huang,&nbsp;Xiaoqin Ha","doi":"10.1089/dna.2022.0643","DOIUrl":null,"url":null,"abstract":"<p><p>Thrombosis is a common problem with potentially severe consequences. Endothelial progenitor cells (EPCs) show great potential as a thrombosis therapy due to their angiogenesis-promoting, thrombus-relieving, and anticoagulant functions. However, cell therapies present more clinical challenges than small molecule solutions. MicroRNAs (miRNAs) are small noncoding single-stranded RNAs with wide-ranging regulatory activities. miRNA-126 is highly enriched in EPCs and endothelial cells. Although increasing research showed that mircoRNA-126 (miR-126) can regulate EPC functions through various pathways and cytokines, summaries of these interactions are rare. Therefore, this brief review of recent findings on the relationship between miRNA-126 and EPC function will attempt to clarify the role of miR-126 in thrombosis through regulation of EPCs, with the goal of exploring alternative therapies for thrombotic diseases.</p>","PeriodicalId":11248,"journal":{"name":"DNA and cell biology","volume":"42 6","pages":"315-321"},"PeriodicalIF":2.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA and cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/dna.2022.0643","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Thrombosis is a common problem with potentially severe consequences. Endothelial progenitor cells (EPCs) show great potential as a thrombosis therapy due to their angiogenesis-promoting, thrombus-relieving, and anticoagulant functions. However, cell therapies present more clinical challenges than small molecule solutions. MicroRNAs (miRNAs) are small noncoding single-stranded RNAs with wide-ranging regulatory activities. miRNA-126 is highly enriched in EPCs and endothelial cells. Although increasing research showed that mircoRNA-126 (miR-126) can regulate EPC functions through various pathways and cytokines, summaries of these interactions are rare. Therefore, this brief review of recent findings on the relationship between miRNA-126 and EPC function will attempt to clarify the role of miR-126 in thrombosis through regulation of EPCs, with the goal of exploring alternative therapies for thrombotic diseases.

MicroRNA-126通过内皮祖细胞调控血栓形成。
血栓形成是一种常见的问题,具有潜在的严重后果。内皮祖细胞(EPCs)由于其促进血管生成、缓解血栓和抗凝功能,在血栓治疗中显示出巨大的潜力。然而,细胞疗法比小分子疗法面临更多的临床挑战。MicroRNAs (miRNAs)是具有广泛调控活性的小的非编码单链rna。miRNA-126在EPCs和内皮细胞中高度富集。尽管越来越多的研究表明mircoRNA-126 (miR-126)可以通过多种途径和细胞因子调节EPC功能,但对这些相互作用的总结很少。因此,本文将简要回顾miRNA-126与EPC功能之间关系的最新研究结果,试图通过调控EPCs阐明miR-126在血栓形成中的作用,目的是探索血栓性疾病的替代疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
DNA and cell biology
DNA and cell biology 生物-生化与分子生物学
CiteScore
6.60
自引率
0.00%
发文量
93
审稿时长
1.5 months
期刊介绍: DNA and Cell Biology delivers authoritative, peer-reviewed research on all aspects of molecular and cellular biology, with a unique focus on combining mechanistic and clinical studies to drive the field forward. DNA and Cell Biology coverage includes: Gene Structure, Function, and Regulation Gene regulation Molecular mechanisms of cell activation Mechanisms of transcriptional, translational, or epigenetic control of gene expression Molecular Medicine Molecular pathogenesis Genetic approaches to cancer and autoimmune diseases Translational studies in cell and molecular biology Cellular Organelles Autophagy Apoptosis P bodies Peroxisosomes Protein Biosynthesis and Degradation Regulation of protein synthesis Post-translational modifications Control of degradation Cell-Autonomous Inflammation and Host Cell Response to Infection Responses to cytokines and other physiological mediators Evasive pathways of pathogens.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信