PCSK9 Biomarker and Key Modulator for Cardiovascular Disorders: Heralding a New Therapeutic Era and Their Future Perspectives.

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jitendra Gupta, Reena Gupta
{"title":"PCSK9 Biomarker and Key Modulator for Cardiovascular Disorders: Heralding a New Therapeutic Era and Their Future Perspectives.","authors":"Jitendra Gupta,&nbsp;Reena Gupta","doi":"10.2174/1874467216666221202144813","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular disorders (CVDs) are the leading cause of death worldwide and are accelerated via the low level of low-density lipoprotein-cholesterol (LDL-C). The proprotein convertase subtilis/kexin type9 (PCSK9), a vital regulator and a biomarker, circulates for the LDL-C and has the degradation capability of the low-density lipoprotein receptor (LDLR). PCSK9 has modulated the overall mechanism by transcription, secretion, clearance, or extracellular inactivation in the past few years.PCSK9 has specific pathophysiological roles in many cardiovascular cells. The initial data on the PCSK9 inhibitor, Evolocumab, has a specific reduction in the composite end-point, such as cardiovascular, myocardial, and stroke, while the rest of the data release is still under wait. Furthermore, it is witnessed that the U.S. and the European authorities have approved two humanized antibodies against the LDL-R binding site of PCSK9. This review highlighted the recent data findings on the PCSK9 and its regulation, focusing on cardiovascular disorders, and summarized the current clinical studies. Thus it provides a ray of hope to overcome statin intolerance and alternative approaches for PSCK9 inhibition and significantly reduce cardiovascular complications. This review plays a pivotal role for the researchers and scientists working on PCSK9 inhibitors to treat cardiovascular disorders.</p>","PeriodicalId":10865,"journal":{"name":"Current molecular pharmacology","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current molecular pharmacology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1874467216666221202144813","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiovascular disorders (CVDs) are the leading cause of death worldwide and are accelerated via the low level of low-density lipoprotein-cholesterol (LDL-C). The proprotein convertase subtilis/kexin type9 (PCSK9), a vital regulator and a biomarker, circulates for the LDL-C and has the degradation capability of the low-density lipoprotein receptor (LDLR). PCSK9 has modulated the overall mechanism by transcription, secretion, clearance, or extracellular inactivation in the past few years.PCSK9 has specific pathophysiological roles in many cardiovascular cells. The initial data on the PCSK9 inhibitor, Evolocumab, has a specific reduction in the composite end-point, such as cardiovascular, myocardial, and stroke, while the rest of the data release is still under wait. Furthermore, it is witnessed that the U.S. and the European authorities have approved two humanized antibodies against the LDL-R binding site of PCSK9. This review highlighted the recent data findings on the PCSK9 and its regulation, focusing on cardiovascular disorders, and summarized the current clinical studies. Thus it provides a ray of hope to overcome statin intolerance and alternative approaches for PSCK9 inhibition and significantly reduce cardiovascular complications. This review plays a pivotal role for the researchers and scientists working on PCSK9 inhibitors to treat cardiovascular disorders.

心血管疾病的PCSK9生物标志物和关键调节剂:预示着一个新的治疗时代及其未来展望。
心血管疾病(cvd)是世界范围内导致死亡的主要原因,低密度脂蛋白-胆固醇(LDL-C)水平的降低加速了心血管疾病的发展。蛋白转化酶枯草杆菌/结蛋白9型(PCSK9)是一种重要的调节因子和生物标志物,可循环用于LDL-C,并具有低密度脂蛋白受体(LDLR)的降解能力。在过去的几年中,PCSK9通过转录、分泌、清除或细胞外失活调节了整个机制。PCSK9在许多心血管细胞中具有特定的病理生理作用。PCSK9抑制剂Evolocumab的初始数据在心血管、心肌和中风等复合终点有特异性降低,而其余数据仍在等待发布。此外,美国和欧洲当局已经批准了两种针对PCSK9的LDL-R结合位点的人源抗体。本综述重点介绍了PCSK9及其调控的最新数据发现,并对目前的临床研究进行了总结。因此,它为克服他汀类药物不耐受和PSCK9抑制的替代方法以及显著减少心血管并发症提供了一线希望。这篇综述对研究PCSK9抑制剂治疗心血管疾病的研究人员和科学家具有关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current molecular pharmacology
Current molecular pharmacology Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
CiteScore
4.90
自引率
3.70%
发文量
112
期刊介绍: Current Molecular Pharmacology aims to publish the latest developments in cellular and molecular pharmacology with a major emphasis on the mechanism of action of novel drugs under development, innovative pharmacological technologies, cell signaling, transduction pathway analysis, genomics, proteomics, and metabonomics applications to drug action. An additional focus will be the way in which normal biological function is illuminated by knowledge of the action of drugs at the cellular and molecular level. The journal publishes full-length/mini reviews, original research articles and thematic issues on molecular pharmacology. Current Molecular Pharmacology is an essential journal for every scientist who is involved in drug design and discovery, target identification, target validation, preclinical and clinical development of drugs therapeutically useful in human disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信