A two-staged NLP-based framework for assessing the sentiments on Indian supreme court judgments.

Isha Gupta, Indranath Chatterjee, Neha Gupta
{"title":"A two-staged NLP-based framework for assessing the sentiments on Indian supreme court judgments.","authors":"Isha Gupta,&nbsp;Indranath Chatterjee,&nbsp;Neha Gupta","doi":"10.1007/s41870-023-01273-z","DOIUrl":null,"url":null,"abstract":"<p><p>Topic modeling is a powerful technique for uncovering hidden patterns in large documents. It can identify themes that are highly connected and lead to a certain region while accounting for temporal and spatial complexity. In addition, sentiment analysis can determine the sentiments of media articles on various issues. This study proposes a two-stage natural language processing-based model that utilizes Latent Dirichlet Allocation to identify critical topics related to each type of legal case or judgment and the Valence Aware Dictionary Sentiment Reasoner algorithm to assess people's sentiments on those topics. By applying these strategies, this research aims to influence public perception of controversial legal issues. This study is the first of its kind to use topic modeling and sentiment analysis on Indian legal documents and paves the way for a better understanding of legal documents.</p>","PeriodicalId":73455,"journal":{"name":"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10133901/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of information technology : an official journal of Bharati Vidyapeeth's Institute of Computer Applications and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41870-023-01273-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Topic modeling is a powerful technique for uncovering hidden patterns in large documents. It can identify themes that are highly connected and lead to a certain region while accounting for temporal and spatial complexity. In addition, sentiment analysis can determine the sentiments of media articles on various issues. This study proposes a two-stage natural language processing-based model that utilizes Latent Dirichlet Allocation to identify critical topics related to each type of legal case or judgment and the Valence Aware Dictionary Sentiment Reasoner algorithm to assess people's sentiments on those topics. By applying these strategies, this research aims to influence public perception of controversial legal issues. This study is the first of its kind to use topic modeling and sentiment analysis on Indian legal documents and paves the way for a better understanding of legal documents.

Abstract Image

Abstract Image

Abstract Image

一个基于NLP的两阶段框架,用于评估对印度最高法院判决的情绪。
主题建模是揭示大型文档中隐藏模式的一种强大技术。它可以识别高度关联的主题,并指向某个区域,同时考虑时间和空间的复杂性。此外,情绪分析可以确定媒体文章对各种问题的情绪。本研究提出了一个基于两阶段自然语言处理的模型,该模型利用潜在狄利克雷分配来识别与每种类型的法律案件或判决相关的关键主题,并利用价值感知词典情感推理算法来评估人们对这些主题的情感。通过运用这些策略,本研究旨在影响公众对有争议的法律问题的看法。本研究首次对印度法律文件进行主题建模和情感分析,为更好地理解法律文件铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信