{"title":"Association of <i>ABCA1</i> R219K polymorphism and telomere length in a Chinese rural population: possible linking to systemic inflammation.","authors":"Shutan Liao, Qing Zhou, Yang Zhang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The ATP-binding cassette transporter A1 (<i>ABCA1</i>) gene polymorphisms have been shown to be associated with various human diseases and pathological conditions such as cardiovascular disease and Alzheimer's disease. However, these associations remain unclear and inconclusive. Interestingly, short telomere length was also observed in these diseases. In the present study, our aims were to investigate the interaction between two selected <i>ABCA1</i> polymorphisms (-565C/T and R219K) and telomere length in a Chinese rural population including 1629 subjects and explore the underlying mechanisms. Genotyping was conducted using Taqman SNP Genotyping Assays. Mean relative leukocyte telomere length was measured using monochrome multiplex quantitative PCR method. We found that the telomere length of R219K RR genotype was significantly shorter than RK or KK genotypes (1.242 ± 0.198 vs 1.271 ± 0.207, <i>P</i> = 0.027 and 1.242 ± 0.198 vs 1.276 ± 0.209, <i>P</i> = 0.021, respectively). While the neutrophil to lymphocyte ratio (NLR) of R219K RR genotype was significantly higher than KK genotype (1.929 ± 0.826 vs 1.768 ± 0.893, <i>P</i> = 0.019). In the general linear models after adjustments for confounding factors, the KK and RK genotypes were both significantly associated with telomere length and NLR. A significant association was also observed for K allele carrier genotypes when compared with RR genotype for telomere length and NLR. In conclusion, the R219K polymorphism of <i>ABCA1</i> was independently associated with telomere length. R219K K allele could be protective against shortening of telomeres and inflammation.</p>","PeriodicalId":15907,"journal":{"name":"Journal of Genetics","volume":"102 ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Genetics","FirstCategoryId":"99","ListUrlMain":"","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
The ATP-binding cassette transporter A1 (ABCA1) gene polymorphisms have been shown to be associated with various human diseases and pathological conditions such as cardiovascular disease and Alzheimer's disease. However, these associations remain unclear and inconclusive. Interestingly, short telomere length was also observed in these diseases. In the present study, our aims were to investigate the interaction between two selected ABCA1 polymorphisms (-565C/T and R219K) and telomere length in a Chinese rural population including 1629 subjects and explore the underlying mechanisms. Genotyping was conducted using Taqman SNP Genotyping Assays. Mean relative leukocyte telomere length was measured using monochrome multiplex quantitative PCR method. We found that the telomere length of R219K RR genotype was significantly shorter than RK or KK genotypes (1.242 ± 0.198 vs 1.271 ± 0.207, P = 0.027 and 1.242 ± 0.198 vs 1.276 ± 0.209, P = 0.021, respectively). While the neutrophil to lymphocyte ratio (NLR) of R219K RR genotype was significantly higher than KK genotype (1.929 ± 0.826 vs 1.768 ± 0.893, P = 0.019). In the general linear models after adjustments for confounding factors, the KK and RK genotypes were both significantly associated with telomere length and NLR. A significant association was also observed for K allele carrier genotypes when compared with RR genotype for telomere length and NLR. In conclusion, the R219K polymorphism of ABCA1 was independently associated with telomere length. R219K K allele could be protective against shortening of telomeres and inflammation.
期刊介绍:
The journal retains its traditional interest in evolutionary research that is of relevance to geneticists, even if this is not explicitly genetical in nature. The journal covers all areas of genetics and evolution,including molecular genetics and molecular evolution.It publishes papers and review articles on current topics, commentaries and essayson ideas and trends in genetics and evolutionary biology, historical developments, debates and book reviews. From 2010 onwards, the journal has published a special category of papers termed ‘Online Resources’. These are brief reports on the development and the routine use of molecular markers for assessing genetic variability within and among species. Also published are reports outlining pedagogical approaches in genetics teaching.