{"title":"The Major Features of Macroevolution.","authors":"L Francisco Henao-Diaz, Matt Pennell","doi":"10.1093/sysbio/syad032","DOIUrl":null,"url":null,"abstract":"<p><p>Evolutionary dynamics operating across deep time leave footprints in the shapes of phylogenetic trees. For the last several decades, researchers have used increasingly large and robust phylogenies to study the evolutionary history of individual clades and to investigate the causes of the glaring disparities in diversity among groups. Whereas typically not the focal point of individual clade-level studies, many researchers have remarked on recurrent patterns that have been observed across many different groups and at many different time scales. Whereas previous studies have documented various such regularities in topology and branch length distributions, they have typically focused on a single pattern and used a disparate collection (oftentimes, of quite variable reliability) of trees to assess it. Here we take advantage of modern megaphylogenies and unify previous disparate observations about the shapes embedded in the Tree of Life to create a catalog of the \"major features of macroevolution.\" By characterizing such a large swath of subtrees in a consistent way, we hope to provide a set of phenomena that process-based macroevolutionary models of diversification ought to seek to explain.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/sysbio/syad032","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Evolutionary dynamics operating across deep time leave footprints in the shapes of phylogenetic trees. For the last several decades, researchers have used increasingly large and robust phylogenies to study the evolutionary history of individual clades and to investigate the causes of the glaring disparities in diversity among groups. Whereas typically not the focal point of individual clade-level studies, many researchers have remarked on recurrent patterns that have been observed across many different groups and at many different time scales. Whereas previous studies have documented various such regularities in topology and branch length distributions, they have typically focused on a single pattern and used a disparate collection (oftentimes, of quite variable reliability) of trees to assess it. Here we take advantage of modern megaphylogenies and unify previous disparate observations about the shapes embedded in the Tree of Life to create a catalog of the "major features of macroevolution." By characterizing such a large swath of subtrees in a consistent way, we hope to provide a set of phenomena that process-based macroevolutionary models of diversification ought to seek to explain.
期刊介绍:
Systematic Biology is the bimonthly journal of the Society of Systematic Biologists. Papers for the journal are original contributions to the theory, principles, and methods of systematics as well as phylogeny, evolution, morphology, biogeography, paleontology, genetics, and the classification of all living things. A Points of View section offers a forum for discussion, while book reviews and announcements of general interest are also featured.