Dissociating instructive from permissive roles of brain circuits with reversible neural activity manipulations.

Daniel Quintana, Hayley A Bounds, Jennifer Brown, May Wang, J Simon Wiegert, Hillel Adesnik
{"title":"Dissociating instructive from permissive roles of brain circuits with reversible neural activity manipulations.","authors":"Daniel Quintana, Hayley A Bounds, Jennifer Brown, May Wang, J Simon Wiegert, Hillel Adesnik","doi":"10.1101/2023.05.11.540397","DOIUrl":null,"url":null,"abstract":"<p><p>Recent work has demonstrated that both permanent lesions and acute inactivation experiments can lead to erroneous conclusions about the causal role of brain areas in specific behaviors, casting serious doubt on major avenues by which neuroscientists study the brain. To overcome this challenge, we developed a three-stage optogenetic approach which leverages the ability to precisely control the temporal period of regional inactivation with either brief or sustained illumination, enabling investigators to dissociate between putative 'permissive' and 'instructive' roles of brain areas in behavior. We applied this approach to the mouse primary visual cortex (V1) to probe whether V1 is permissive or instructive for the detection low contrast stimuli. Acute inactivation of V1 drastically suppressed performance, but during persistent inactivation, the animals' contrast detection recovered to pre-silencing levels. This recovery was itself reversible, as returning the animals to intermittent V1 inactivation reinstated the behavioral deficit. These results argue that V1 is the default circuit mice use to detect visual stimuli, but in its absence, other regions can compensate for it. This novel, temporally controllable optogenetic perturbation paradigm should be useful in other brain circuits to assess whether they are instructive or permissive in a brain function or behavior.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a3/bd/nihpp-2023.05.11.540397v1.PMC10197619.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.05.11.540397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent work has demonstrated that both permanent lesions and acute inactivation experiments can lead to erroneous conclusions about the causal role of brain areas in specific behaviors, casting serious doubt on major avenues by which neuroscientists study the brain. To overcome this challenge, we developed a three-stage optogenetic approach which leverages the ability to precisely control the temporal period of regional inactivation with either brief or sustained illumination, enabling investigators to dissociate between putative 'permissive' and 'instructive' roles of brain areas in behavior. We applied this approach to the mouse primary visual cortex (V1) to probe whether V1 is permissive or instructive for the detection low contrast stimuli. Acute inactivation of V1 drastically suppressed performance, but during persistent inactivation, the animals' contrast detection recovered to pre-silencing levels. This recovery was itself reversible, as returning the animals to intermittent V1 inactivation reinstated the behavioral deficit. These results argue that V1 is the default circuit mice use to detect visual stimuli, but in its absence, other regions can compensate for it. This novel, temporally controllable optogenetic perturbation paradigm should be useful in other brain circuits to assess whether they are instructive or permissive in a brain function or behavior.

Abstract Image

Abstract Image

Abstract Image

用可逆的神经活动操作将大脑回路的指导性作用与许可性作用分离开来。
神经科学家依靠有针对性的扰动和损伤来因果映射大脑功能1。然而,由于大脑是高度互联的,对一个区域的操作可以通过对许多其他大脑区域的间接影响来影响行为,从而使对这些结果的解释复杂化2,3。另一方面,经常观察到的损伤后行为表现的恢复可能会让人怀疑损伤区域是否曾直接受累4,5。最近的研究强调了急性和不可逆失活的结果是如何直接冲突的4-6,这使得人们不清楚大脑区域对特定的大脑功能是有指导意义的还是仅仅是允许的。为了克服这一挑战,我们开发了一种三阶段光遗传学方法,该方法利用短暂或持续照明精确控制区域失活的时间周期的能力。使用视觉检测任务,我们发现,如果在每个行为会话的试验中皮层失活是间歇性的,那么初级视觉皮层(V1)的急性光遗传学失活会抑制任务表现。然而,当我们在整个行为过程中灭活V1时,动物在短短一到两天内迅速恢复了表现。最重要的是,在将这些恢复的动物恢复到间歇性皮层失活后,它们在光遗传学失活试验中很快又失败了。这些数据支持一个修正后的模型,其中皮层是指导基本感官任务中感知表现的默认电路。更普遍地说,这种新颖的、时间可控的光遗传学扰动范式可以广泛应用于大脑回路和特定细胞类型,以评估它们对大脑功能或行为是有指导性的还是仅仅是允许性的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信