Interpretable Classification of Categorical Time Series Using the Spectral Envelope and Optimal Scalings.

IF 4.3 3区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Journal of Machine Learning Research Pub Date : 2022-01-01
Zeda Li, Scott A Bruce, Tian Cai
{"title":"Interpretable Classification of Categorical Time Series Using the Spectral Envelope and Optimal Scalings.","authors":"Zeda Li,&nbsp;Scott A Bruce,&nbsp;Tian Cai","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>This article introduces a novel approach to the classification of categorical time series under the supervised learning paradigm. To construct meaningful features for categorical time series classification, we consider two relevant quantities: the spectral envelope and its corresponding set of optimal scalings. These quantities characterize oscillatory patterns in a categorical time series as the largest possible power at each frequency, or <i>spectral envelope</i>, obtained by assigning numerical values, or <i>scalings</i>, to categories that optimally emphasize oscillations at each frequency. Our procedure combines these two quantities to produce an interpretable and parsimonious feature-based classifier that can be used to accurately determine group membership for categorical time series. Classification consistency of the proposed method is investigated, and simulation studies are used to demonstrate accuracy in classifying categorical time series with various underlying group structures. Finally, we use the proposed method to explore key differences in oscillatory patterns of sleep stage time series for patients with different sleep disorders and accurately classify patients accordingly. The code for implementing the proposed method is available at https://github.com/zedali16/envsca.</p>","PeriodicalId":50161,"journal":{"name":"Journal of Machine Learning Research","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10210597/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Machine Learning Research","FirstCategoryId":"94","ListUrlMain":"","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces a novel approach to the classification of categorical time series under the supervised learning paradigm. To construct meaningful features for categorical time series classification, we consider two relevant quantities: the spectral envelope and its corresponding set of optimal scalings. These quantities characterize oscillatory patterns in a categorical time series as the largest possible power at each frequency, or spectral envelope, obtained by assigning numerical values, or scalings, to categories that optimally emphasize oscillations at each frequency. Our procedure combines these two quantities to produce an interpretable and parsimonious feature-based classifier that can be used to accurately determine group membership for categorical time series. Classification consistency of the proposed method is investigated, and simulation studies are used to demonstrate accuracy in classifying categorical time series with various underlying group structures. Finally, we use the proposed method to explore key differences in oscillatory patterns of sleep stage time series for patients with different sleep disorders and accurately classify patients accordingly. The code for implementing the proposed method is available at https://github.com/zedali16/envsca.

Abstract Image

Abstract Image

Abstract Image

使用谱包络和最优标度的分类时间序列的可解释分类。
本文介绍了一种在监督学习范式下分类时间序列的新方法。为了构造对分类时间序列分类有意义的特征,我们考虑了两个相关的量:谱包络及其相应的最优尺度集。这些量将分类时间序列中的振荡模式表征为每个频率或频谱包络的最大可能功率,通过分配数值或缩放来获得,以最优地强调每个频率的振荡。我们的程序将这两个量结合起来,产生一个可解释且简洁的基于特征的分类器,可用于准确确定分类时间序列的组成员关系。研究了该方法的分类一致性,并用仿真研究证明了该方法对具有不同底层群结构的分类时间序列进行分类的准确性。最后,我们使用该方法探索不同睡眠障碍患者睡眠阶段时间序列振荡模式的关键差异,并据此对患者进行准确分类。实现所建议的方法的代码可在https://github.com/zedali16/envsca上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Machine Learning Research
Journal of Machine Learning Research 工程技术-计算机:人工智能
CiteScore
18.80
自引率
0.00%
发文量
2
审稿时长
3 months
期刊介绍: The Journal of Machine Learning Research (JMLR) provides an international forum for the electronic and paper publication of high-quality scholarly articles in all areas of machine learning. All published papers are freely available online. JMLR has a commitment to rigorous yet rapid reviewing. JMLR seeks previously unpublished papers on machine learning that contain: new principled algorithms with sound empirical validation, and with justification of theoretical, psychological, or biological nature; experimental and/or theoretical studies yielding new insight into the design and behavior of learning in intelligent systems; accounts of applications of existing techniques that shed light on the strengths and weaknesses of the methods; formalization of new learning tasks (e.g., in the context of new applications) and of methods for assessing performance on those tasks; development of new analytical frameworks that advance theoretical studies of practical learning methods; computational models of data from natural learning systems at the behavioral or neural level; or extremely well-written surveys of existing work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信