The role of left ventricular hypertrophy measured by echocardiography in screening patients with ischaemia with non-obstructive coronary arteries: a cross-sectional study.
{"title":"The role of left ventricular hypertrophy measured by echocardiography in screening patients with ischaemia with non-obstructive coronary arteries: a cross-sectional study.","authors":"Hao Yang, Hua Teng, Peng Luo, Ruqian Fu, Xiaoting Wang, Guang Qin, Min Gao, Jianli Ren","doi":"10.1007/s10554-023-02879-x","DOIUrl":null,"url":null,"abstract":"<p><p>Many patients with ischaemia with non-obstructive coronary arteries (INOCA) have a poor prognosis. This study aims to explore the diagnostic value of left ventricular hypertrophy (LVH)-related ultrasound parameters in INOCA patients. The study group consisted of 258 patients with INOCA in this retrospective cross-sectional study, and these patients were free of obstructive coronary artery disease, previous revascularization, atrial fibrillation, ejection fraction < 50%, major distortions of left ventricular geometry, suspected non-ischaemic causes. Control individuals were matched 1:1 with study group according to age, sex, cardiovascular risk factors, and time of hospital stay. According to left ventricular mass index (LVMI) and relative wall thickness, left ventricular geometry was composed of concentric hypertrophy, eccentric hypertrophy, concentric remodeling and normal geometry. LVH-related parameters, left ventricular geometry, demographic characteristics, laboratory parameters and other echocardiographic indicators were compared between the two groups. Subgroup analysis was performed based on sex. LVMI in the study group was higher than that in the control group (86.86 ± 18.83 g/m<sup>2</sup> vs 82.25 ± 14.29 g/m<sup>2</sup>, P = 0.008). The ratio of LVH was higher in the study group (20.16% vs 10.85%, P = 0.006). After subgroup analysis based on sex, LVMI differences (85.77 ± 18.30 g/m<sup>2</sup> vs 81.59 ± 14.64 g/m<sup>2</sup>, P = 0.014) and the ratio of LVH differences (25.00% vs 14.77%, P = 0.027) still existed in females between the two groups. There was no difference in the constituent ratio of left ventricular geometry between the two groups (P = 0.157). Sex-based subgroup analysis showed no difference in the constituent ratio of left ventricular geometry between the two groups in females (P = 0.242). The degree of LVH in the study group was higher than that in the control group, suggesting that LVH may play an important role in the occurrence and development of INOCA. Moreover, LVH-related ultrasound parameters may be of higher diagnostic value for female INOCA patients than for male INOCA patients.</p>","PeriodicalId":50332,"journal":{"name":"International Journal of Cardiovascular Imaging","volume":" ","pages":"1657-1666"},"PeriodicalIF":1.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cardiovascular Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10554-023-02879-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Many patients with ischaemia with non-obstructive coronary arteries (INOCA) have a poor prognosis. This study aims to explore the diagnostic value of left ventricular hypertrophy (LVH)-related ultrasound parameters in INOCA patients. The study group consisted of 258 patients with INOCA in this retrospective cross-sectional study, and these patients were free of obstructive coronary artery disease, previous revascularization, atrial fibrillation, ejection fraction < 50%, major distortions of left ventricular geometry, suspected non-ischaemic causes. Control individuals were matched 1:1 with study group according to age, sex, cardiovascular risk factors, and time of hospital stay. According to left ventricular mass index (LVMI) and relative wall thickness, left ventricular geometry was composed of concentric hypertrophy, eccentric hypertrophy, concentric remodeling and normal geometry. LVH-related parameters, left ventricular geometry, demographic characteristics, laboratory parameters and other echocardiographic indicators were compared between the two groups. Subgroup analysis was performed based on sex. LVMI in the study group was higher than that in the control group (86.86 ± 18.83 g/m2 vs 82.25 ± 14.29 g/m2, P = 0.008). The ratio of LVH was higher in the study group (20.16% vs 10.85%, P = 0.006). After subgroup analysis based on sex, LVMI differences (85.77 ± 18.30 g/m2 vs 81.59 ± 14.64 g/m2, P = 0.014) and the ratio of LVH differences (25.00% vs 14.77%, P = 0.027) still existed in females between the two groups. There was no difference in the constituent ratio of left ventricular geometry between the two groups (P = 0.157). Sex-based subgroup analysis showed no difference in the constituent ratio of left ventricular geometry between the two groups in females (P = 0.242). The degree of LVH in the study group was higher than that in the control group, suggesting that LVH may play an important role in the occurrence and development of INOCA. Moreover, LVH-related ultrasound parameters may be of higher diagnostic value for female INOCA patients than for male INOCA patients.
期刊介绍:
The International Journal of Cardiovascular Imaging publishes technical and clinical communications (original articles, review articles and editorial comments) associated with cardiovascular diseases. The technical communications include the research, development and evaluation of novel imaging methods in the various imaging domains. These domains include magnetic resonance imaging, computed tomography, X-ray imaging, intravascular imaging, and applications in nuclear cardiology and echocardiography, and any combination of these techniques. Of particular interest are topics in medical image processing and image-guided interventions. Clinical applications of such imaging techniques include improved diagnostic approaches, treatment , prognosis and follow-up of cardiovascular patients. Topics include: multi-center or larger individual studies dealing with risk stratification and imaging utilization, applications for better characterization of cardiovascular diseases, and assessment of the efficacy of new drugs and interventional devices.