Rearrangement distance with reversals, indels, and moves in intergenic regions on signed and unsigned permutations.

IF 0.9 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Klairton Lima Brito, Andre Rodrigues Oliveira, Alexsandro Oliveira Alexandrino, Ulisses Dias, Zanoni Dias
{"title":"Rearrangement distance with reversals, indels, and moves in intergenic regions on signed and unsigned permutations.","authors":"Klairton Lima Brito,&nbsp;Andre Rodrigues Oliveira,&nbsp;Alexsandro Oliveira Alexandrino,&nbsp;Ulisses Dias,&nbsp;Zanoni Dias","doi":"10.1142/S0219720023500099","DOIUrl":null,"url":null,"abstract":"<p><p>Genome rearrangement events are widely used to estimate a minimum-size sequence of mutations capable of transforming a genome into another. The length of this sequence is called distance, and determining it is the main goal in genome rearrangement distance problems. Problems in the genome rearrangement field differ regarding the set of rearrangement events allowed and the genome representation. In this work, we consider the scenario where the genomes share the same set of genes, gene orientation is known or unknown, and intergenic regions (structures between a pair of genes and at the extremities of the genome) are taken into account. We use two models, the first model allows only conservative events (reversals and moves), and the second model includes non-conservative events (insertions and deletions) in the intergenic regions. We show that both models result in NP-hard problems no matter if gene orientation is known or unknown. When the information regarding the orientation of genes is available, we present for both models an approximation algorithm with a factor of 2. For the scenario where this information is unavailable, we propose a 4-approximation algorithm for both models.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720023500099","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Genome rearrangement events are widely used to estimate a minimum-size sequence of mutations capable of transforming a genome into another. The length of this sequence is called distance, and determining it is the main goal in genome rearrangement distance problems. Problems in the genome rearrangement field differ regarding the set of rearrangement events allowed and the genome representation. In this work, we consider the scenario where the genomes share the same set of genes, gene orientation is known or unknown, and intergenic regions (structures between a pair of genes and at the extremities of the genome) are taken into account. We use two models, the first model allows only conservative events (reversals and moves), and the second model includes non-conservative events (insertions and deletions) in the intergenic regions. We show that both models result in NP-hard problems no matter if gene orientation is known or unknown. When the information regarding the orientation of genes is available, we present for both models an approximation algorithm with a factor of 2. For the scenario where this information is unavailable, we propose a 4-approximation algorithm for both models.

在有符号排列和无符号排列上,重排与反转、索引和基因间区域移动的距离。
基因组重排事件被广泛用于估计能够将一个基因组转化为另一个基因组的最小大小突变序列。这个序列的长度称为距离,确定它是基因组重排距离问题的主要目标。基因组重排领域的问题在允许的重排事件集和基因组表示方面有所不同。在这项工作中,我们考虑了基因组共享同一组基因的情况,基因取向是已知或未知的,基因间区域(一对基因之间和基因组末端的结构)被考虑在内。我们使用了两个模型,第一个模型只允许保守事件(反转和移动),第二个模型包括基因间区域的非保守事件(插入和删除)。我们表明,无论基因取向是已知的还是未知的,这两种模型都会导致np困难问题。当有关基因取向的信息是可用的,我们提出了两个模型的近似算法与因子2。对于这些信息不可用的场景,我们为两个模型提出了一个4近似算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Bioinformatics and Computational Biology
Journal of Bioinformatics and Computational Biology MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
2.10
自引率
0.00%
发文量
57
期刊介绍: The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information. The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信