OBLIQUE RANDOM SURVIVAL FORESTS.

IF 1.3 4区 数学 Q2 STATISTICS & PROBABILITY
Annals of Applied Statistics Pub Date : 2019-09-01 Epub Date: 2019-10-17 DOI:10.1214/19-aoas1261
Byron C Jaeger, D Leann Long, Dustin M Long, Mario Sims, Jeff M Szychowski, Yuan-I Min, Leslie A Mcclure, George Howard, Noah Simon
{"title":"OBLIQUE RANDOM SURVIVAL FORESTS.","authors":"Byron C Jaeger, D Leann Long, Dustin M Long, Mario Sims, Jeff M Szychowski, Yuan-I Min, Leslie A Mcclure, George Howard, Noah Simon","doi":"10.1214/19-aoas1261","DOIUrl":null,"url":null,"abstract":"<p><p>We introduce and evaluate the oblique random survival forest (ORSF). The ORSF is an ensemble method for right-censored survival data that uses linear combinations of input variables to recursively partition a set of training data. Regularized Cox proportional hazard models are used to identify linear combinations of input variables in each recursive partitioning step. Benchmark results using simulated and real data indicate that the ORSF's predicted risk function has high prognostic value in comparison to random survival forests, conditional inference forests, regression, and boosting. In an application to data from the Jackson Heart Study, we demonstrate variable and partial dependence using the ORSF and highlight characteristics of its 10-year predicted risk function for atherosclerotic cardiovascular disease events (ASCVD; stroke, coronary heart disease). We present visualizations comparing variable and partial effect estimation according to the ORSF, the conditional inference forest, and the Pooled Cohort Risk equations. The obliqueRSF R package, which provides functions to fit the ORSF and create variable and partial dependence plots, is available on the comprehensive R archive network (CRAN).</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"13 3","pages":"1847-1883"},"PeriodicalIF":1.3000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9875945/pdf/nihms-1827649.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/19-aoas1261","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/10/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce and evaluate the oblique random survival forest (ORSF). The ORSF is an ensemble method for right-censored survival data that uses linear combinations of input variables to recursively partition a set of training data. Regularized Cox proportional hazard models are used to identify linear combinations of input variables in each recursive partitioning step. Benchmark results using simulated and real data indicate that the ORSF's predicted risk function has high prognostic value in comparison to random survival forests, conditional inference forests, regression, and boosting. In an application to data from the Jackson Heart Study, we demonstrate variable and partial dependence using the ORSF and highlight characteristics of its 10-year predicted risk function for atherosclerotic cardiovascular disease events (ASCVD; stroke, coronary heart disease). We present visualizations comparing variable and partial effect estimation according to the ORSF, the conditional inference forest, and the Pooled Cohort Risk equations. The obliqueRSF R package, which provides functions to fit the ORSF and create variable and partial dependence plots, is available on the comprehensive R archive network (CRAN).

Abstract Image

Abstract Image

Abstract Image

斜随机生存林
我们介绍并评估了斜随机生存森林(ORSF)。斜随机生存林是一种针对右删失生存数据的集合方法,它使用输入变量的线性组合来递归分割一组训练数据。在每个递归分割步骤中,使用正则化的考克斯比例危险模型来识别输入变量的线性组合。使用模拟和真实数据得出的基准结果表明,与随机生存森林、条件推理森林、回归和提升相比,ORSF 的预测风险函数具有很高的预后价值。在对杰克逊心脏病研究数据的应用中,我们利用 ORSF 演示了变量依赖性和部分依赖性,并强调了其对动脉粥样硬化性心血管疾病(ASCVD;中风、冠心病)事件的 10 年预测风险函数的特点。我们展示了根据 ORSF、条件推理森林和汇集队列风险方程对变量和部分效应估计进行比较的可视化效果。obliqueRSF R软件包提供了拟合ORSF和创建变量及部分依赖性图的函数,可在R综合档案网络(CRAN)上下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Applied Statistics
Annals of Applied Statistics 社会科学-统计学与概率论
CiteScore
3.10
自引率
5.60%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信