TOWARDS MUSCULOSKELETAL SIMULATION-AWARE FALL INJURY MITIGATION: TRANSFER LEARNING WITH DEEP CNN FOR FALL DETECTION.

Haben Yhdego, Jiang Li, Steven Morrison, Michel Audette, Christopher Paolini, Mahasweta Sarkar, Hamid Okhravi
{"title":"TOWARDS MUSCULOSKELETAL SIMULATION-AWARE FALL INJURY MITIGATION: TRANSFER LEARNING WITH DEEP CNN FOR FALL DETECTION.","authors":"Haben Yhdego,&nbsp;Jiang Li,&nbsp;Steven Morrison,&nbsp;Michel Audette,&nbsp;Christopher Paolini,&nbsp;Mahasweta Sarkar,&nbsp;Hamid Okhravi","doi":"10.23919/springsim.2019.8732857","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents early work on a fall detection method using transfer learning method, in conjunction with a long-term effort to combine efficient machine learning and prior personalized musculoskeletal modeling to deploy fall injury mitigation in geriatric subjects. Inspired by the tremendous progress in image-based object recognition with deep convolutional neural networks (DCNNs), we opt for a pre-trained kinematics-based machine learning approach through existing large-scale annotated accelerometry datasets. The accelerometry datasets are converted to images using time-frequency analysis, based on scalograms, by computing the continuous wavelet transform filter bank. Subsequently, data augmentation is performed on these scalogram images to increase accuracy, thereby complementing limited labeled fall sensor data, enabling transfer learning from the existing pre-trained model. The experimental results on publicly available URFD datasets demonstrate that transfer learning leads to a better performance than the existing methods in the case of scarce labeled training data.</p>","PeriodicalId":74859,"journal":{"name":"Spring simulation conference (SpringSim)","volume":"2019 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.23919/springsim.2019.8732857","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spring simulation conference (SpringSim)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/springsim.2019.8732857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/6/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

This paper presents early work on a fall detection method using transfer learning method, in conjunction with a long-term effort to combine efficient machine learning and prior personalized musculoskeletal modeling to deploy fall injury mitigation in geriatric subjects. Inspired by the tremendous progress in image-based object recognition with deep convolutional neural networks (DCNNs), we opt for a pre-trained kinematics-based machine learning approach through existing large-scale annotated accelerometry datasets. The accelerometry datasets are converted to images using time-frequency analysis, based on scalograms, by computing the continuous wavelet transform filter bank. Subsequently, data augmentation is performed on these scalogram images to increase accuracy, thereby complementing limited labeled fall sensor data, enabling transfer learning from the existing pre-trained model. The experimental results on publicly available URFD datasets demonstrate that transfer learning leads to a better performance than the existing methods in the case of scarce labeled training data.

Abstract Image

Abstract Image

Abstract Image

肌肉骨骼模拟软件跌倒损伤缓解:深度CNN迁移学习用于跌倒检测。
本文介绍了使用迁移学习方法的跌倒检测方法的早期工作,以及将高效的机器学习和先前的个性化肌肉骨骼建模相结合的长期努力,以在老年受试者中部署跌倒损伤缓解措施。受深度卷积神经网络(DCNN)在基于图像的物体识别方面取得的巨大进展的启发,我们通过现有的大规模注释加速度数据集选择了一种基于运动学的预训练机器学习方法。通过计算连续小波变换滤波器组,使用基于标度图的时频分析将加速度数据集转换为图像。随后,对这些标度图图像进行数据扩充以提高准确性,从而补充有限的标记跌倒传感器数据,从而能够从现有的预训练模型中进行迁移学习。在公开可用的URFD数据集上的实验结果表明,在标记训练数据稀少的情况下,迁移学习比现有方法具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信