Machine learning applications on intratumoral heterogeneity in glioblastoma using single-cell RNA sequencing data.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Harold Brayan Arteaga-Arteaga, Mariana S Candamil-Cortés, Brian Breaux, Pablo Guillen-Rondon, Simon Orozco-Arias, Reinel Tabares-Soto
{"title":"Machine learning applications on intratumoral heterogeneity in glioblastoma using single-cell RNA sequencing data.","authors":"Harold Brayan Arteaga-Arteaga, Mariana S Candamil-Cortés, Brian Breaux, Pablo Guillen-Rondon, Simon Orozco-Arias, Reinel Tabares-Soto","doi":"10.1093/bfgp/elad002","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence is revolutionizing all fields that affect people's lives and health. One of the most critical applications is in the study of tumors. It is the case of glioblastoma (GBM) that has behaviors that need to be understood to develop effective therapies. Due to advances in single-cell RNA sequencing (scRNA-seq), it is possible to understand the cellular and molecular heterogeneity in the GBM. Given that there are different cell groups in these tumors, there is a need to apply Machine Learning (ML) algorithms. It will allow extracting information to understand how cancer changes and broaden the search for effective treatments. We proposed multiple comparisons of ML algorithms to classify cell groups based on the GBM scRNA-seq data. This broad comparison spectrum can show the scientific-medical community which models can achieve the best performance in this task. In this work are classified the following cell groups: Tumor Core (TC), Tumor Periphery (TP) and Normal Periphery (NP), in binary and multi-class scenarios. This work presents the biomarker candidates found for the models with the best results. The analyses presented here allow us to verify the biomarker candidates to understand the genetic characteristics of GBM, which may be affected by a suitable identification of GBM heterogeneity. This work obtained for the four scenarios covered cross-validation results of $93.03\\% \\pm 5.37\\%$, $97.42\\% \\pm 3.94\\%$, $98.27\\% \\pm 1.81\\%$ and $93.04\\% \\pm 6.88\\%$ for the classification of TP versus TC, TP versus NP, NP versus TP and TC (TPC) and NP versus TP versus TC, respectively.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elad002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence is revolutionizing all fields that affect people's lives and health. One of the most critical applications is in the study of tumors. It is the case of glioblastoma (GBM) that has behaviors that need to be understood to develop effective therapies. Due to advances in single-cell RNA sequencing (scRNA-seq), it is possible to understand the cellular and molecular heterogeneity in the GBM. Given that there are different cell groups in these tumors, there is a need to apply Machine Learning (ML) algorithms. It will allow extracting information to understand how cancer changes and broaden the search for effective treatments. We proposed multiple comparisons of ML algorithms to classify cell groups based on the GBM scRNA-seq data. This broad comparison spectrum can show the scientific-medical community which models can achieve the best performance in this task. In this work are classified the following cell groups: Tumor Core (TC), Tumor Periphery (TP) and Normal Periphery (NP), in binary and multi-class scenarios. This work presents the biomarker candidates found for the models with the best results. The analyses presented here allow us to verify the biomarker candidates to understand the genetic characteristics of GBM, which may be affected by a suitable identification of GBM heterogeneity. This work obtained for the four scenarios covered cross-validation results of $93.03\% \pm 5.37\%$, $97.42\% \pm 3.94\%$, $98.27\% \pm 1.81\%$ and $93.04\% \pm 6.88\%$ for the classification of TP versus TC, TP versus NP, NP versus TP and TC (TPC) and NP versus TP versus TC, respectively.

利用单细胞RNA测序数据,机器学习在胶质母细胞瘤内异质性研究中的应用。
人工智能正在彻底改变影响人们生活和健康的所有领域。其中最关键的应用是肿瘤研究。胶质母细胞瘤(GBM)的行为需要了解,以开发有效的治疗方法。由于单细胞RNA测序(scRNA-seq)的进步,有可能了解GBM的细胞和分子异质性。考虑到这些肿瘤中有不同的细胞群,有必要应用机器学习(ML)算法。它将允许提取信息来了解癌症是如何变化的,并扩大对有效治疗方法的研究。我们提出了基于GBM scRNA-seq数据的ML算法分类的多个比较。这种广泛的比较范围可以向科学界和医学界展示哪些模型可以在这项任务中实现最佳性能。在这项工作中分为以下细胞组:肿瘤核心(TC),肿瘤外围(TP)和正常外围(NP),在二元和多类的情况下。这项工作提出了最佳结果的生物标志物候选模型。本文提出的分析使我们能够验证候选生物标志物,以了解GBM的遗传特征,这可能受到GBM异质性的适当鉴定的影响。本文在四种场景下得到的交叉验证结果分别为:$ 93.03% \pm 5.37\%$、$ 97.42% \pm 3.94\%$、$ 98.27% \pm 1.81\%$和$ 93.04% \pm 6.88\%$,分别用于TP与TC、TP与NP、NP与TP和TC (TPC)、NP与TP与TC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信