Md Shakir Hossain, Md Abu Saleh Tajin, Kapil R Dandekar
{"title":"UHF RFID tag localization using pattern reconfigurable reader antenna.","authors":"Md Shakir Hossain, Md Abu Saleh Tajin, Kapil R Dandekar","doi":"10.1109/wamicon53991.2022.9786069","DOIUrl":null,"url":null,"abstract":"<p><p>Passive ultra high frequency (UHF) radio frequency identification (RFID) tags have the potential to find ubiquitous use in indoor object tracking, localization, and contact tracing. We propose a machine learning-based method for RFID indoor localization using a pattern reconfigurable UHF RFID reader antenna array. The received signal strength indicator (RSSI) values (from 10,000 tags) recorded at the reader antenna units are used as features to evaluate the machine learning models with a train-test split of 75%-25%. The training and testing data is generated by a wireless ray tracing simulator. Five machine learning models: random forest regressor, decision tree regressor, Nu support vector regressor, <math><mi>k</mi></math> nearest regressor, and kernel ridge regressor are compared. Random forest regressor has the lowest localization error both in terms of average Euclidean distance (AED) and root-mean-square error (RMSE). For random forest regressor, localization error results show that 90% of the tags are within 1 meter of their true position, and 67% are within 50 cm of their true position based on Euclidean distance.</p>","PeriodicalId":74924,"journal":{"name":"The ... IEEE Annual Wireless and Microwave Technology Conference. IEEE Annual Wireless and Microwave Technology Conference","volume":"2022 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10202132/pdf/nihms-1897104.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ... IEEE Annual Wireless and Microwave Technology Conference. IEEE Annual Wireless and Microwave Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/wamicon53991.2022.9786069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Passive ultra high frequency (UHF) radio frequency identification (RFID) tags have the potential to find ubiquitous use in indoor object tracking, localization, and contact tracing. We propose a machine learning-based method for RFID indoor localization using a pattern reconfigurable UHF RFID reader antenna array. The received signal strength indicator (RSSI) values (from 10,000 tags) recorded at the reader antenna units are used as features to evaluate the machine learning models with a train-test split of 75%-25%. The training and testing data is generated by a wireless ray tracing simulator. Five machine learning models: random forest regressor, decision tree regressor, Nu support vector regressor, nearest regressor, and kernel ridge regressor are compared. Random forest regressor has the lowest localization error both in terms of average Euclidean distance (AED) and root-mean-square error (RMSE). For random forest regressor, localization error results show that 90% of the tags are within 1 meter of their true position, and 67% are within 50 cm of their true position based on Euclidean distance.