A CDK-Dependent Phosphorylation of a Novel Domain of Rif1 Regulates its Function during Telomere Damage and Other Types of Stress.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Cameron M Robertson, Yuan Xue, Shobir Chowdhury, Laura Maringele
{"title":"A CDK-Dependent Phosphorylation of a Novel Domain of Rif1 Regulates its Function during Telomere Damage and Other Types of Stress.","authors":"Cameron M Robertson,&nbsp;Yuan Xue,&nbsp;Shobir Chowdhury,&nbsp;Laura Maringele","doi":"10.1080/10985549.2023.2193768","DOIUrl":null,"url":null,"abstract":"<p><p>Rif1 mediates telomere length, DNA replication, and DNA damage responses in budding yeast. Previous work identified several posttranslational modifications of Rif1, however none of these was shown to mediate the molecular or cellular responses to DNA damage, including telomere damage. We searched for such modifications using immunoblotting methods and the <i>cdc13-1</i> and <i>tlc1Δ</i> models of telomere damage. We found that Rif1 is phosphorylated during telomere damage, and that serines 57 and 110 within a novel phospho-gate domain (PGD) of Rif1 are important for this modification, in <i>cdc13-1</i> cells. The phosphorylation of Rif1 appeared to inhibit its accumulation on damaged chromosomes and the proliferation of cells with telomere damage. Moreover, we found that checkpoint kinases were upstream of this Rif1 phosphorylation and that the Cdk1 activity was essential for maintaining it. Apart from telomere damage, S57 and S110 were essential for Rif1 phosphorylation during the treatment of cells with genotoxic agents or during mitotic stress. We propose a speculative \"Pliers\" model to explain the role of the PGD phosphorylation during telomere and other types of damage.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5d/79/TMCB_43_2193768.PMC10184589.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10985549.2023.2193768","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Rif1 mediates telomere length, DNA replication, and DNA damage responses in budding yeast. Previous work identified several posttranslational modifications of Rif1, however none of these was shown to mediate the molecular or cellular responses to DNA damage, including telomere damage. We searched for such modifications using immunoblotting methods and the cdc13-1 and tlc1Δ models of telomere damage. We found that Rif1 is phosphorylated during telomere damage, and that serines 57 and 110 within a novel phospho-gate domain (PGD) of Rif1 are important for this modification, in cdc13-1 cells. The phosphorylation of Rif1 appeared to inhibit its accumulation on damaged chromosomes and the proliferation of cells with telomere damage. Moreover, we found that checkpoint kinases were upstream of this Rif1 phosphorylation and that the Cdk1 activity was essential for maintaining it. Apart from telomere damage, S57 and S110 were essential for Rif1 phosphorylation during the treatment of cells with genotoxic agents or during mitotic stress. We propose a speculative "Pliers" model to explain the role of the PGD phosphorylation during telomere and other types of damage.

Abstract Image

Abstract Image

Abstract Image

cdk依赖性的Rif1新结构域磷酸化调节其在端粒损伤和其他类型应激中的功能。
在出芽酵母中,Rif1介导端粒长度、DNA复制和DNA损伤反应。先前的研究发现了Rif1的几种翻译后修饰,但是这些修饰都没有显示出介导DNA损伤的分子或细胞反应,包括端粒损伤。我们使用免疫印迹方法和端粒损伤的cdc13-1和tlc1Δ模型来寻找这些修饰。我们发现Rif1在端粒损伤过程中被磷酸化,并且在cdc13-1细胞中,Rif1的一个新的磷酸化门结构域(PGD)内的丝氨酸57和110对这种修饰很重要。Rif1的磷酸化似乎抑制了其在受损染色体上的积累和端粒损伤细胞的增殖。此外,我们发现检查点激酶位于Rif1磷酸化的上游,Cdk1活性对于维持它是必不可少的。除了端粒损伤外,S57和S110在基因毒性药物处理细胞或有丝分裂应激过程中对Rif1磷酸化至关重要。我们提出了一个推测性的“钳子”模型来解释PGD磷酸化在端粒和其他类型损伤中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信