Bistability at the onset of neuronal oscillations.

IF 1.7 4区 工程技术 Q3 COMPUTER SCIENCE, CYBERNETICS
Yiqing Lu, Xiu Xin, John Rinzel
{"title":"Bistability at the onset of neuronal oscillations.","authors":"Yiqing Lu,&nbsp;Xiu Xin,&nbsp;John Rinzel","doi":"10.1007/s00422-022-00954-5","DOIUrl":null,"url":null,"abstract":"<p><p>The Hodgkin-Huxley (HH) model and squid axon (bathed in reduced Ca<sup>2+</sup>) fire repetitively for steady current injection. Moreover, for a current-range just suprathreshold, repetitive firing coexists with a stable steady state. Neuronal excitability, as such, shows bistability and hysteresis providing the opportunity for the system to perform as switchable between firing and non-firing states with transient input and providing the backbone as a dynamical mechanism for bursting oscillations. Some conditions for bistability can be derived by intricate analysis (bifurcation theory) and characterized by simulation, but conditions for emergence and robustness of such bistability do not typically follow from intuition. Here, we demonstrate with a semi-quantitative two-variable, V-w, reduction of the HH model features that promote/reduce bistability. Visualization of flow and trajectories in the V-w phase plane provides an intuitive grasp for bistability. The geometry of action potential recovery involves a late phase during which the dynamic negative feedback of [Formula: see text] inactivation and [Formula: see text] activation over/undershoot, respectively, their resting values, thereby leading to hyperexcitabilty and an intrinsically generated opportunity to by-pass the spiral-like stable rest state and initiate the next spike upstroke. We illustrate control of bistability and dependence of the degree of hysteresis on recovery timescales and gating properties. Our dynamical dissection reveals the strongly attracting depolarized phase of the spike, enabling approximations like the resetting feature of adapting integrate-and-fire models. We extend our insights and show that the Morris-Lecar model can also exhibit robust bistability.</p>","PeriodicalId":55374,"journal":{"name":"Biological Cybernetics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Cybernetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00422-022-00954-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 4

Abstract

The Hodgkin-Huxley (HH) model and squid axon (bathed in reduced Ca2+) fire repetitively for steady current injection. Moreover, for a current-range just suprathreshold, repetitive firing coexists with a stable steady state. Neuronal excitability, as such, shows bistability and hysteresis providing the opportunity for the system to perform as switchable between firing and non-firing states with transient input and providing the backbone as a dynamical mechanism for bursting oscillations. Some conditions for bistability can be derived by intricate analysis (bifurcation theory) and characterized by simulation, but conditions for emergence and robustness of such bistability do not typically follow from intuition. Here, we demonstrate with a semi-quantitative two-variable, V-w, reduction of the HH model features that promote/reduce bistability. Visualization of flow and trajectories in the V-w phase plane provides an intuitive grasp for bistability. The geometry of action potential recovery involves a late phase during which the dynamic negative feedback of [Formula: see text] inactivation and [Formula: see text] activation over/undershoot, respectively, their resting values, thereby leading to hyperexcitabilty and an intrinsically generated opportunity to by-pass the spiral-like stable rest state and initiate the next spike upstroke. We illustrate control of bistability and dependence of the degree of hysteresis on recovery timescales and gating properties. Our dynamical dissection reveals the strongly attracting depolarized phase of the spike, enabling approximations like the resetting feature of adapting integrate-and-fire models. We extend our insights and show that the Morris-Lecar model can also exhibit robust bistability.

Abstract Image

神经振荡开始时的双稳性。
霍奇金-赫胥黎(HH)模型和鱿鱼轴突(沐浴在减少的Ca2+中)反复放电以稳定电流注射。此外,对于刚超过阈值的电流范围,重复放电与稳定的稳态共存。因此,神经元的兴奋性表现出双稳定性和迟滞性,为系统提供了在瞬态输入下在放电和非放电状态之间切换的机会,并为突发振荡提供了动力机制。双稳定性的一些条件可以通过复杂的分析(分岔理论)推导出来,并通过模拟来表征,但这种双稳定性的出现和鲁棒性的条件通常不遵循直觉。在这里,我们用半定量的双变量,V-w,证明了HH模型特征的减少,促进/减少双稳定性。V-w相平面上的流动和轨迹的可视化提供了对双稳定性的直观把握。动作电位恢复的几何形状涉及一个后期阶段,在此期间,[公式:见文]失活和[公式:见文]激活的动态负反馈分别超过/低于其静息值,从而导致过度兴奋性和内在产生的机会,绕过螺旋状的稳定静息状态,并启动下一个突升。我们说明了双稳定性的控制和滞后程度对恢复时间尺度和门控特性的依赖。我们的动力学解剖揭示了尖峰的强吸引去极化相位,使近似像自适应集成和发射模型的重置特征。我们扩展了我们的见解,并表明Morris-Lecar模型也可以表现出稳健的双稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biological Cybernetics
Biological Cybernetics 工程技术-计算机:控制论
CiteScore
3.50
自引率
5.30%
发文量
38
审稿时长
6-12 weeks
期刊介绍: Biological Cybernetics is an interdisciplinary medium for theoretical and application-oriented aspects of information processing in organisms, including sensory, motor, cognitive, and ecological phenomena. Topics covered include: mathematical modeling of biological systems; computational, theoretical or engineering studies with relevance for understanding biological information processing; and artificial implementation of biological information processing and self-organizing principles. Under the main aspects of performance and function of systems, emphasis is laid on communication between life sciences and technical/theoretical disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信