LncRNA CRNDE is involved in the pathogenesis of renal fibrosis by regulating renal epithelial cell mesenchymal-epithelial transition via targeting miR-29a-3p
IF 1.5 4区 医学Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Min Zhao, Nan Li, Cheng Wan, Qingyan Zhang, Hengjin Wang, Chunming Jiang
{"title":"LncRNA CRNDE is involved in the pathogenesis of renal fibrosis by regulating renal epithelial cell mesenchymal-epithelial transition via targeting miR-29a-3p","authors":"Min Zhao, Nan Li, Cheng Wan, Qingyan Zhang, Hengjin Wang, Chunming Jiang","doi":"10.1016/j.mrfmmm.2023.111817","DOIUrl":null,"url":null,"abstract":"<div><p><span>Results of previous studies suggested that renal fibrosis and epithelial-mesenchymal transition (EMT) plays an important role in the process of renal fibrosis, but the underlying mechanism remains unclear. Long coding </span>RNA<span> (lncRNA) CRNDE has emerged as potent regulators of EMT programs, therefore, in present work, we examined the roles of LncRNA CRNDE/miR-29a-3p axis in renal fibrosis and the underlying mechanism. We found that in both renal fibrosis animal and cell models, lncRNA CRNDE was dynamically upregulated in animal models or cells by the treatment of TGF-β. Furthermore, knockdown of CRNDE to rat significantly inhibited EMT, prevented renal fibrosis. Finally, CRNDE regulates renal fibrosis through suppression of miR-29a-3p expression. Together, our results demonstrated that CRNDE acted as a regulator of renal fibrosis via targeting miR-29a-3p. Our findings may provide a potential therapeutic target for the treatment of renal fibrosis.</span></p></div>","PeriodicalId":49790,"journal":{"name":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","volume":"826 ","pages":"Article 111817"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0027510723000040","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Results of previous studies suggested that renal fibrosis and epithelial-mesenchymal transition (EMT) plays an important role in the process of renal fibrosis, but the underlying mechanism remains unclear. Long coding RNA (lncRNA) CRNDE has emerged as potent regulators of EMT programs, therefore, in present work, we examined the roles of LncRNA CRNDE/miR-29a-3p axis in renal fibrosis and the underlying mechanism. We found that in both renal fibrosis animal and cell models, lncRNA CRNDE was dynamically upregulated in animal models or cells by the treatment of TGF-β. Furthermore, knockdown of CRNDE to rat significantly inhibited EMT, prevented renal fibrosis. Finally, CRNDE regulates renal fibrosis through suppression of miR-29a-3p expression. Together, our results demonstrated that CRNDE acted as a regulator of renal fibrosis via targeting miR-29a-3p. Our findings may provide a potential therapeutic target for the treatment of renal fibrosis.
期刊介绍:
Mutation Research (MR) provides a platform for publishing all aspects of DNA mutations and epimutations, from basic evolutionary aspects to translational applications in genetic and epigenetic diagnostics and therapy. Mutations are defined as all possible alterations in DNA sequence and sequence organization, from point mutations to genome structural variation, chromosomal aberrations and aneuploidy. Epimutations are defined as alterations in the epigenome, i.e., changes in DNA methylation, histone modification and small regulatory RNAs.
MR publishes articles in the following areas:
Of special interest are basic mechanisms through which DNA damage and mutations impact development and differentiation, stem cell biology and cell fate in general, including various forms of cell death and cellular senescence.
The study of genome instability in human molecular epidemiology and in relation to complex phenotypes, such as human disease, is considered a growing area of importance.
Mechanisms of (epi)mutation induction, for example, during DNA repair, replication or recombination; novel methods of (epi)mutation detection, with a focus on ultra-high-throughput sequencing.
Landscape of somatic mutations and epimutations in cancer and aging.
Role of de novo mutations in human disease and aging; mutations in population genomics.
Interactions between mutations and epimutations.
The role of epimutations in chromatin structure and function.
Mitochondrial DNA mutations and their consequences in terms of human disease and aging.
Novel ways to generate mutations and epimutations in cell lines and animal models.