Antonio M Fernández-Gómez, David Gutiérrez-Avilés, Alicia Troncoso, Francisco Martínez-Álvarez
{"title":"A new Apache Spark-based framework for big data streaming forecasting in IoT networks.","authors":"Antonio M Fernández-Gómez, David Gutiérrez-Avilés, Alicia Troncoso, Francisco Martínez-Álvarez","doi":"10.1007/s11227-023-05100-x","DOIUrl":null,"url":null,"abstract":"<p><p>Analyzing time-dependent data acquired in a continuous flow is a major challenge for various fields, such as big data and machine learning. Being able to analyze a large volume of data from various sources, such as sensors, networks, and the internet, is essential for improving the efficiency of our society's production processes. Additionally, this vast amount of data is collected dynamically in a continuous stream. The goal of this research is to provide a comprehensive framework for forecasting big data streams from Internet of Things networks and serve as a guide for designing and deploying other third-party solutions. Hence, a new framework for time series forecasting in a big data streaming scenario, using data collected from Internet of Things networks, is presented. This framework comprises of five main modules: Internet of Things network design and deployment, big data streaming architecture, stream data modeling method, big data forecasting method, and a comprehensive real-world application scenario, consisting of a physical Internet of Things network feeding the big data streaming architecture, being the linear regression the algorithm used for illustrative purposes. Comparison with other frameworks reveals that this is the first framework that incorporates and integrates all the aforementioned modules.</p>","PeriodicalId":50034,"journal":{"name":"Journal of Supercomputing","volume":"79 10","pages":"11078-11100"},"PeriodicalIF":2.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9942040/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Supercomputing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11227-023-05100-x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 3
Abstract
Analyzing time-dependent data acquired in a continuous flow is a major challenge for various fields, such as big data and machine learning. Being able to analyze a large volume of data from various sources, such as sensors, networks, and the internet, is essential for improving the efficiency of our society's production processes. Additionally, this vast amount of data is collected dynamically in a continuous stream. The goal of this research is to provide a comprehensive framework for forecasting big data streams from Internet of Things networks and serve as a guide for designing and deploying other third-party solutions. Hence, a new framework for time series forecasting in a big data streaming scenario, using data collected from Internet of Things networks, is presented. This framework comprises of five main modules: Internet of Things network design and deployment, big data streaming architecture, stream data modeling method, big data forecasting method, and a comprehensive real-world application scenario, consisting of a physical Internet of Things network feeding the big data streaming architecture, being the linear regression the algorithm used for illustrative purposes. Comparison with other frameworks reveals that this is the first framework that incorporates and integrates all the aforementioned modules.
期刊介绍:
The Journal of Supercomputing publishes papers on the technology, architecture and systems, algorithms, languages and programs, performance measures and methods, and applications of all aspects of Supercomputing. Tutorial and survey papers are intended for workers and students in the fields associated with and employing advanced computer systems. The journal also publishes letters to the editor, especially in areas relating to policy, succinct statements of paradoxes, intuitively puzzling results, partial results and real needs.
Published theoretical and practical papers are advanced, in-depth treatments describing new developments and new ideas. Each includes an introduction summarizing prior, directly pertinent work that is useful for the reader to understand, in order to appreciate the advances being described.