Hemostasis-on-a-chip / incorporating the endothelium in microfluidic models of bleeding.

IF 2.5 3区 医学 Q3 CELL BIOLOGY
Yumiko Sakurai, Elaissa T Hardy, Wilbur A Lam
{"title":"Hemostasis-on-a-chip / incorporating the endothelium in microfluidic models of bleeding.","authors":"Yumiko Sakurai, Elaissa T Hardy, Wilbur A Lam","doi":"10.1080/09537104.2023.2185453","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, point-of-care assays for human platelet function and coagulation are used to assess bleeding risks and drug testing, but they lack intact endothelium, a critical component of the human vascular system. Within these assays, the assessment of bleeding risk is typically indicated by the lack of or reduced platelet function and coagulation without true evaluation of hemostasis. Hemostasis is defined as the cessation of bleeding. Additionally, animal models of hemostasis also, by definition, lack human endothelium, which may limit their clinical relevance. This review discusses the current state-of-the-art of hemostasis-on-a-chip, specifically, human cell-based microfluidic models that incorporate endothelial cells, which function as physiologically relevant <i>in vitro</i> models of bleeding. These assays recapitulate the entire process of vascular injury, bleeding, and hemostasis, and provide real-time, direct observation, thereby serving as research-enabling tools that enhance our understanding of hemostasis and also as novel drug discovery platforms.</p>","PeriodicalId":20268,"journal":{"name":"Platelets","volume":"34 1","pages":"2185453"},"PeriodicalIF":2.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197822/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Platelets","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/09537104.2023.2185453","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, point-of-care assays for human platelet function and coagulation are used to assess bleeding risks and drug testing, but they lack intact endothelium, a critical component of the human vascular system. Within these assays, the assessment of bleeding risk is typically indicated by the lack of or reduced platelet function and coagulation without true evaluation of hemostasis. Hemostasis is defined as the cessation of bleeding. Additionally, animal models of hemostasis also, by definition, lack human endothelium, which may limit their clinical relevance. This review discusses the current state-of-the-art of hemostasis-on-a-chip, specifically, human cell-based microfluidic models that incorporate endothelial cells, which function as physiologically relevant in vitro models of bleeding. These assays recapitulate the entire process of vascular injury, bleeding, and hemostasis, and provide real-time, direct observation, thereby serving as research-enabling tools that enhance our understanding of hemostasis and also as novel drug discovery platforms.

芯片止血/内皮细胞植入出血微流控模型。
目前,人类血小板功能和凝血的护理点分析用于评估出血风险和药物测试,但它们缺乏完整的内皮,而内皮是人类血管系统的关键组成部分。在这些测定中,出血风险的评估通常通过缺乏或减少血小板功能和凝血来指示,而没有对止血进行真正的评估。止血是指止血。此外,根据定义,止血动物模型也缺乏人类内皮,这可能限制了其临床相关性。这篇综述讨论了芯片止血的最新技术,特别是包含内皮细胞的基于人类细胞的微流体模型,其功能是作为生理相关的体外出血模型。这些分析概括了血管损伤、出血和止血的整个过程,并提供了实时、直接的观察,从而成为增强我们对止血理解的研究工具,也是新的药物发现平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Platelets
Platelets 医学-细胞生物学
CiteScore
6.70
自引率
3.00%
发文量
79
审稿时长
1 months
期刊介绍: Platelets is an international, peer-reviewed journal covering all aspects of platelet- and megakaryocyte-related research. Platelets provides the opportunity for contributors and readers across scientific disciplines to engage with new information about blood platelets. The journal’s Methods section aims to improve standardization between laboratories and to help researchers replicate difficult methods. Research areas include: Platelet function Biochemistry Signal transduction Pharmacology and therapeutics Interaction with other cells in the blood vessel wall The contribution of platelets and platelet-derived products to health and disease The journal publishes original articles, fast-track articles, review articles, systematic reviews, methods papers, short communications, case reports, opinion articles, commentaries, gene of the issue, and letters to the editor. Platelets operates a single-blind peer review policy. Authors can choose to publish gold open access in this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信