High-Resolution and Multidimensional Phenotypes Can Complement Genomics Data to Diagnose Diseases in the Neonatal Population.

IF 3.7 Q2 GENETICS & HEREDITY
Phenomics (Cham, Switzerland) Pub Date : 2022-09-09 eCollection Date: 2023-04-01 DOI:10.1007/s43657-022-00071-0
Tiantian Xiao, Xinran Dong, Yulan Lu, Wenhao Zhou
{"title":"High-Resolution and Multidimensional Phenotypes Can Complement Genomics Data to Diagnose Diseases in the Neonatal Population.","authors":"Tiantian Xiao, Xinran Dong, Yulan Lu, Wenhao Zhou","doi":"10.1007/s43657-022-00071-0","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in genomic medicine have greatly improved our understanding of human diseases. However, phenome is not well understood. High-resolution and multidimensional phenotypes have shed light on the mechanisms underlying neonatal diseases in greater details and have the potential to optimize clinical strategies. In this review, we first highlight the value of analyzing traditional phenotypes using a data science approach in the neonatal population. We then discuss recent research on high-resolution, multidimensional, and structured phenotypes in neonatal critical diseases. Finally, we briefly introduce current technologies available for the analysis of multidimensional data and the value that can be provided by integrating these data into clinical practice. In summary, a time series of multidimensional phenome can improve our understanding of disease mechanisms and diagnostic decision-making, stratify patients, and provide clinicians with optimized strategies for therapeutic intervention; however, the available technologies for collecting multidimensional data and the best platform for connecting multiple modalities should be considered.</p>","PeriodicalId":74435,"journal":{"name":"Phenomics (Cham, Switzerland)","volume":"3 2","pages":"204-215"},"PeriodicalIF":3.7000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10110825/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phenomics (Cham, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43657-022-00071-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Advances in genomic medicine have greatly improved our understanding of human diseases. However, phenome is not well understood. High-resolution and multidimensional phenotypes have shed light on the mechanisms underlying neonatal diseases in greater details and have the potential to optimize clinical strategies. In this review, we first highlight the value of analyzing traditional phenotypes using a data science approach in the neonatal population. We then discuss recent research on high-resolution, multidimensional, and structured phenotypes in neonatal critical diseases. Finally, we briefly introduce current technologies available for the analysis of multidimensional data and the value that can be provided by integrating these data into clinical practice. In summary, a time series of multidimensional phenome can improve our understanding of disease mechanisms and diagnostic decision-making, stratify patients, and provide clinicians with optimized strategies for therapeutic intervention; however, the available technologies for collecting multidimensional data and the best platform for connecting multiple modalities should be considered.

高分辨率和多维表型可以补充基因组学数据来诊断新生儿群体中的疾病。
基因组医学的进步极大地提高了我们对人类疾病的理解。然而,这一现象并没有得到很好的理解。高分辨率和多维表型更详细地揭示了新生儿疾病的潜在机制,并有可能优化临床策略。在这篇综述中,我们首先强调了在新生儿群体中使用数据科学方法分析传统表型的价值。然后,我们讨论了最近关于新生儿危重症高分辨率、多维和结构化表型的研究。最后,我们简要介绍了目前可用于多维数据分析的技术,以及将这些数据集成到临床实践中所能提供的价值。总之,多维现象的时间序列可以提高我们对疾病机制和诊断决策的理解,对患者进行分层,并为临床医生提供最佳的治疗干预策略;然而,应考虑收集多维数据的现有技术和连接多种模式的最佳平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信