Single-cell RNA-seq data clustering by deep information fusion.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Liangrui Ren, Jun Wang, Wei Li, Maozu Guo, Guoxian Yu
{"title":"Single-cell RNA-seq data clustering by deep information fusion.","authors":"Liangrui Ren, Jun Wang, Wei Li, Maozu Guo, Guoxian Yu","doi":"10.1093/bfgp/elad017","DOIUrl":null,"url":null,"abstract":"<p><p>Determining cell types by single-cell transcriptomics data is fundamental for downstream analysis. However, cell clustering and data imputation still face the computation challenges, due to the high dropout rate, sparsity and dimensionality of single-cell data. Although some deep learning based solutions have been proposed to handle these challenges, they still can not leverage gene attribute information and cell topology in a sensible way to explore the consistent clustering. In this paper, we present scDeepFC, a deep information fusion-based single-cell data clustering method for cell clustering and data imputation. Specifically, scDeepFC uses a deep auto-encoder (DAE) network and a deep graph convolution network to embed high-dimensional gene attribute information and high-order cell-cell topological information into different low-dimensional representations, and then fuses them to generate a more comprehensive and accurate consensus representation via a deep information fusion network. In addition, scDeepFC integrates the zero-inflated negative binomial (ZINB) into DAE to model the dropout events. By jointly optimizing the ZINB loss and cell graph reconstruction loss, scDeepFC generates a salient embedding representation for clustering cells and imputing missing data. Extensive experiments on real single-cell datasets prove that scDeepFC outperforms other popular single-cell analysis methods. Both the gene attribute and cell topology information can improve the cell clustering.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elad017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Determining cell types by single-cell transcriptomics data is fundamental for downstream analysis. However, cell clustering and data imputation still face the computation challenges, due to the high dropout rate, sparsity and dimensionality of single-cell data. Although some deep learning based solutions have been proposed to handle these challenges, they still can not leverage gene attribute information and cell topology in a sensible way to explore the consistent clustering. In this paper, we present scDeepFC, a deep information fusion-based single-cell data clustering method for cell clustering and data imputation. Specifically, scDeepFC uses a deep auto-encoder (DAE) network and a deep graph convolution network to embed high-dimensional gene attribute information and high-order cell-cell topological information into different low-dimensional representations, and then fuses them to generate a more comprehensive and accurate consensus representation via a deep information fusion network. In addition, scDeepFC integrates the zero-inflated negative binomial (ZINB) into DAE to model the dropout events. By jointly optimizing the ZINB loss and cell graph reconstruction loss, scDeepFC generates a salient embedding representation for clustering cells and imputing missing data. Extensive experiments on real single-cell datasets prove that scDeepFC outperforms other popular single-cell analysis methods. Both the gene attribute and cell topology information can improve the cell clustering.

通过深度信息融合对单细胞 RNA-seq 数据进行聚类。
通过单细胞转录组学数据确定细胞类型是下游分析的基础。然而,由于单细胞数据的高丢失率、稀疏性和维度性,细胞聚类和数据估算仍面临计算挑战。虽然已经提出了一些基于深度学习的解决方案来应对这些挑战,但它们仍然无法以合理的方式利用基因属性信息和细胞拓扑结构来探索一致性聚类。本文提出了一种基于深度信息融合的单细胞数据聚类方法--scDeepFC,用于细胞聚类和数据估算。具体来说,scDeepFC 利用深度自动编码器(DAE)网络和深度图卷积网络将高维基因属性信息和高阶细胞-细胞拓扑信息嵌入到不同的低维表征中,然后通过深度信息融合网络将它们融合生成更全面、更准确的共识表征。此外,scDeepFC 还将零膨胀负二项式(ZINB)集成到 DAE 中,以模拟辍学事件。通过联合优化 ZINB 损失和细胞图重建损失,scDeepFC 生成了用于细胞聚类和缺失数据补充的突出嵌入表示。在真实单细胞数据集上进行的大量实验证明,scDeepFC优于其他流行的单细胞分析方法。基因属性和细胞拓扑信息都能改进细胞聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信