TOPOLOGICAL LEARNING FOR BRAIN NETWORKS.

IF 1.3 4区 数学 Q2 STATISTICS & PROBABILITY
Annals of Applied Statistics Pub Date : 2023-03-01 Epub Date: 2023-01-24 DOI:10.1214/22-aoas1633
Tananun Songdechakraiwut, Moo K Chung
{"title":"TOPOLOGICAL LEARNING FOR BRAIN NETWORKS.","authors":"Tananun Songdechakraiwut, Moo K Chung","doi":"10.1214/22-aoas1633","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes a novel topological learning framework that integrates networks of different sizes and topology through persistent homology. Such challenging task is made possible through the introduction of a computationally efficient topological loss. The use of the proposed loss bypasses the intrinsic computational bottleneck associated with matching networks. We validate the method in extensive statistical simulations to assess its effectiveness when discriminating networks with different topology. The method is further demonstrated in a twin brain imaging study where we determine if brain networks are genetically heritable. The challenge here is due to the difficulty of overlaying the topologically different functional brain networks obtained from resting-state functional MRI onto the template structural brain network obtained through diffusion MRI.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"17 1","pages":"403-433"},"PeriodicalIF":1.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9997114/pdf/nihms-1868875.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aoas1633","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a novel topological learning framework that integrates networks of different sizes and topology through persistent homology. Such challenging task is made possible through the introduction of a computationally efficient topological loss. The use of the proposed loss bypasses the intrinsic computational bottleneck associated with matching networks. We validate the method in extensive statistical simulations to assess its effectiveness when discriminating networks with different topology. The method is further demonstrated in a twin brain imaging study where we determine if brain networks are genetically heritable. The challenge here is due to the difficulty of overlaying the topologically different functional brain networks obtained from resting-state functional MRI onto the template structural brain network obtained through diffusion MRI.

脑网络拓扑学习
本文提出了一种新颖的拓扑学习框架,通过持久同源性整合不同规模和拓扑结构的网络。通过引入计算效率高的拓扑损耗,这项具有挑战性的任务得以实现。使用所提出的损失可以绕过与匹配网络相关的内在计算瓶颈。我们在大量统计模拟中验证了这种方法,以评估它在区分不同拓扑结构的网络时的有效性。我们还在一项双胞胎大脑成像研究中进一步验证了该方法,并确定了大脑网络是否具有遗传性。我们面临的挑战是如何将静息态功能磁共振成像获得的拓扑结构不同的大脑功能网络叠加到通过扩散磁共振成像获得的大脑结构网络模板上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Applied Statistics
Annals of Applied Statistics 社会科学-统计学与概率论
CiteScore
3.10
自引率
5.60%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Statistical research spans an enormous range from direct subject-matter collaborations to pure mathematical theory. The Annals of Applied Statistics, the newest journal from the IMS, is aimed at papers in the applied half of this range. Published quarterly in both print and electronic form, our goal is to provide a timely and unified forum for all areas of applied statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信