Mingming Chen, Di Lian, Yan Li, Yue Zhao, Xueling Xu, Zhimei Liu, Jinlong Zhang, Xiaosheng Zhang, Sujun Wu, Shiyu Qi, Shoulong Deng, Kun Yu, Zhengxing Lian
{"title":"Global Long Noncoding RNA Expression Profiling of <i>MSTN</i> and <i>FGF5</i> Double-Knockout Sheep Reveals the Key Gatekeepers of Skeletal Muscle Development.","authors":"Mingming Chen, Di Lian, Yan Li, Yue Zhao, Xueling Xu, Zhimei Liu, Jinlong Zhang, Xiaosheng Zhang, Sujun Wu, Shiyu Qi, Shoulong Deng, Kun Yu, Zhengxing Lian","doi":"10.1089/dna.2022.0574","DOIUrl":null,"url":null,"abstract":"<p><p>Improving livestock and poultry growth rates and increasing meat production are urgently needed worldwide. Previously, we produced a myostatin (MSTN) and fibroblast growth factor 5 (FGF5) double-knockout (MF<sup>-/-</sup>) sheep by CRISPR Cas9 system to improve meat production, and also wool production. Both MF<sup>-/-</sup> sheep and the F1 generation (MF<sup>+/-</sup>) sheep showed an obvious \"double-muscle\" phenotype. In this study, we identified the expression profiles of long noncoding RNAs (lncRNAs) in wild-type and MF<sup>+/-</sup> sheep, then screened out the key candidate lncRNAs that can regulate myogenic differentiation and skeletal muscle development. These key candidate lncRNAs can serve as critical gatekeepers for muscle contraction, calcium ion transport and skeletal muscle cell differentiation, apoptosis, autophagy, and skeletal muscle inflammation, further revealing that lncRNAs play crucial roles in regulating muscle phenotype in MF<sup>+/-</sup> sheep. In conclusion, our newly identified lncRNAs may emerge as novel molecules for muscle development or muscle disease and provide a new reference for MSTN-mediated regulation of skeletal muscle development.</p>","PeriodicalId":11248,"journal":{"name":"DNA and cell biology","volume":"42 3","pages":"163-175"},"PeriodicalIF":2.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA and cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/dna.2022.0574","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Improving livestock and poultry growth rates and increasing meat production are urgently needed worldwide. Previously, we produced a myostatin (MSTN) and fibroblast growth factor 5 (FGF5) double-knockout (MF-/-) sheep by CRISPR Cas9 system to improve meat production, and also wool production. Both MF-/- sheep and the F1 generation (MF+/-) sheep showed an obvious "double-muscle" phenotype. In this study, we identified the expression profiles of long noncoding RNAs (lncRNAs) in wild-type and MF+/- sheep, then screened out the key candidate lncRNAs that can regulate myogenic differentiation and skeletal muscle development. These key candidate lncRNAs can serve as critical gatekeepers for muscle contraction, calcium ion transport and skeletal muscle cell differentiation, apoptosis, autophagy, and skeletal muscle inflammation, further revealing that lncRNAs play crucial roles in regulating muscle phenotype in MF+/- sheep. In conclusion, our newly identified lncRNAs may emerge as novel molecules for muscle development or muscle disease and provide a new reference for MSTN-mediated regulation of skeletal muscle development.
期刊介绍:
DNA and Cell Biology delivers authoritative, peer-reviewed research on all aspects of molecular and cellular biology, with a unique focus on combining mechanistic and clinical studies to drive the field forward.
DNA and Cell Biology coverage includes:
Gene Structure, Function, and Regulation
Gene regulation
Molecular mechanisms of cell activation
Mechanisms of transcriptional, translational, or epigenetic control of gene expression
Molecular Medicine
Molecular pathogenesis
Genetic approaches to cancer and autoimmune diseases
Translational studies in cell and molecular biology
Cellular Organelles
Autophagy
Apoptosis
P bodies
Peroxisosomes
Protein Biosynthesis and Degradation
Regulation of protein synthesis
Post-translational modifications
Control of degradation
Cell-Autonomous Inflammation and Host Cell Response to Infection
Responses to cytokines and other physiological mediators
Evasive pathways of pathogens.