{"title":"A pharmacokinetic model based on the SSA-1DCNN-Attention method.","authors":"Zi-Yi He, Jie-Yu Yang, Yong Li","doi":"10.1142/S021972002350004X","DOIUrl":null,"url":null,"abstract":"<p><p>To solve the problem of the lack of representativeness of the training set and the poor prediction accuracy due to the limited number of training samples when the machine learning method is used for the classification and prediction of pharmacokinetic indicators, this paper proposes a 1DCNN-Attention concentration prediction model optimized by the sparrow search algorithm (SSA). First, the SMOTE method is used to expand the small sample experimental data to make the data diverse and representative. Then a one-dimensional convolutional neural network (1DCNN) model is established, and the attention mechanism is introduced to calculate the weight of each variable for dividing the importance of each pharmacokinetic indicator by the output drug concentration. The SSA algorithm was used to optimize the parameters in the model to improve the prediction accuracy after data expansion. Taking the pharmacokinetic model of phenobarbital (PHB) combined with <i>Cynanchum otophyllum saponins</i> to treat epilepsy as an example, the concentration changes of PHB were predicted and the effectiveness of the method was verified. The results show that the proposed model has a better prediction effect than other methods.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":"21 1","pages":"2350004"},"PeriodicalIF":0.9000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S021972002350004X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
To solve the problem of the lack of representativeness of the training set and the poor prediction accuracy due to the limited number of training samples when the machine learning method is used for the classification and prediction of pharmacokinetic indicators, this paper proposes a 1DCNN-Attention concentration prediction model optimized by the sparrow search algorithm (SSA). First, the SMOTE method is used to expand the small sample experimental data to make the data diverse and representative. Then a one-dimensional convolutional neural network (1DCNN) model is established, and the attention mechanism is introduced to calculate the weight of each variable for dividing the importance of each pharmacokinetic indicator by the output drug concentration. The SSA algorithm was used to optimize the parameters in the model to improve the prediction accuracy after data expansion. Taking the pharmacokinetic model of phenobarbital (PHB) combined with Cynanchum otophyllum saponins to treat epilepsy as an example, the concentration changes of PHB were predicted and the effectiveness of the method was verified. The results show that the proposed model has a better prediction effect than other methods.
期刊介绍:
The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information.
The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.