Pil-Won Seo , Do-Heon Gu , Ji-Won Kim , Jun-Hong Kim , Suk-Youl Park , Jeong-Sun Kim
{"title":"Structural characterization of the type I-B CRISPR Cas7 from Thermobaculum terrenum","authors":"Pil-Won Seo , Do-Heon Gu , Ji-Won Kim , Jun-Hong Kim , Suk-Youl Park , Jeong-Sun Kim","doi":"10.1016/j.bbapap.2023.140900","DOIUrl":null,"url":null,"abstract":"<div><p><span>Clustered regularly interspaced short palindromic repeats (CRISPR) in many </span>prokaryotes<span> functions as an adaptive immune system against mobile genetic elements<span><span>. A heterologous ribonucleoprotein silencing complex composed of CRISPR-associated (Cas) proteins and a CRISPR </span>RNA (crRNA) neutralizes the incoming mobile genetic elements. The type I and III silencing complexes commonly include a protein-helical backbone of several copies of identical subunits, for example, Cas7 in the type I silencing complex.</span></span></p><p>In this study, we structurally characterized type I-B Cas7 (Csh2 from <em>Thermobaculum terrenum</em><span>; TterCsh2). The revealed crystal structure of TterCsh2 shows a typical glove-like architecture of Cas7, which consists of a palm, a thumb, and a finger domain. Csh2 proteins have 5 conserved sequence motifs that are arranged to form a presumable crRNA-binding site in the TterCsh2 structure. This crRNA binding site of TterCsh2 is structurally and potentially comparable to those observed in helix-forming Cas7 structures in other sub-types. Analysis of the reported Cas7 structures and their sequences suggests that Cas7s can be divided into at least two sub-classes. These data will broaden our understanding on the Cascade complex of CRISPR/Cas systems.</span></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570963923000134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) in many prokaryotes functions as an adaptive immune system against mobile genetic elements. A heterologous ribonucleoprotein silencing complex composed of CRISPR-associated (Cas) proteins and a CRISPR RNA (crRNA) neutralizes the incoming mobile genetic elements. The type I and III silencing complexes commonly include a protein-helical backbone of several copies of identical subunits, for example, Cas7 in the type I silencing complex.
In this study, we structurally characterized type I-B Cas7 (Csh2 from Thermobaculum terrenum; TterCsh2). The revealed crystal structure of TterCsh2 shows a typical glove-like architecture of Cas7, which consists of a palm, a thumb, and a finger domain. Csh2 proteins have 5 conserved sequence motifs that are arranged to form a presumable crRNA-binding site in the TterCsh2 structure. This crRNA binding site of TterCsh2 is structurally and potentially comparable to those observed in helix-forming Cas7 structures in other sub-types. Analysis of the reported Cas7 structures and their sequences suggests that Cas7s can be divided into at least two sub-classes. These data will broaden our understanding on the Cascade complex of CRISPR/Cas systems.