Xin Huang, Benzhe Su, Xingyu Wang, Yang Zhou, Xinyu He, Bing Liu
{"title":"A network-based dynamic criterion for identifying prediction and early diagnosis biomarkers of complex diseases.","authors":"Xin Huang, Benzhe Su, Xingyu Wang, Yang Zhou, Xinyu He, Bing Liu","doi":"10.1142/S0219720022500275","DOIUrl":null,"url":null,"abstract":"<p><p>Lung adenocarcinoma (LUAD) seriously threatens human health and generally results from dysfunction of relevant module molecules, which dynamically change with time and conditions, rather than that of an individual molecule. In this study, a novel network construction algorithm for identifying early warning network signals (IEWNS) is proposed for improving the performance of LUAD early diagnosis. To this end, we theoretically derived a dynamic criterion, namely, the relationship of variation (RV), to construct dynamic networks. RV infers correlation [Formula: see text] statistics to measure dynamic changes in molecular relationships during the process of disease development. Based on the dynamic networks constructed by IEWNS, network warning signals used to represent the occurrence of LUAD deterioration can be defined without human intervention. IEWNS was employed to perform a comprehensive analysis of gene expression profiles of LUAD from The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database. The experimental results suggest that the potential biomarkers selected by IEWNS can facilitate a better understanding of pathogenetic mechanisms and help to achieve effective early diagnosis of LUAD. In conclusion, IEWNS provides novel insight into the initiation and progression of LUAD and helps to define prospective biomarkers for assessing disease deterioration.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":"20 6","pages":"2250027"},"PeriodicalIF":0.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720022500275","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lung adenocarcinoma (LUAD) seriously threatens human health and generally results from dysfunction of relevant module molecules, which dynamically change with time and conditions, rather than that of an individual molecule. In this study, a novel network construction algorithm for identifying early warning network signals (IEWNS) is proposed for improving the performance of LUAD early diagnosis. To this end, we theoretically derived a dynamic criterion, namely, the relationship of variation (RV), to construct dynamic networks. RV infers correlation [Formula: see text] statistics to measure dynamic changes in molecular relationships during the process of disease development. Based on the dynamic networks constructed by IEWNS, network warning signals used to represent the occurrence of LUAD deterioration can be defined without human intervention. IEWNS was employed to perform a comprehensive analysis of gene expression profiles of LUAD from The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database. The experimental results suggest that the potential biomarkers selected by IEWNS can facilitate a better understanding of pathogenetic mechanisms and help to achieve effective early diagnosis of LUAD. In conclusion, IEWNS provides novel insight into the initiation and progression of LUAD and helps to define prospective biomarkers for assessing disease deterioration.
期刊介绍:
The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information.
The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.