Michael Schulder, Akash Mishra, Antonios Mammis, Andres Horn, Alexandre Boutet, Patric Blomstedt, Stephan Chabardes, Oliver Flouty, Andres M Lozano, Joseph S Neimat, Francisco Ponce, Philip A Starr, Joachim K Krauss, Marwan Hariz, Jin Woo Chang
{"title":"Advances in Technical Aspects of Deep Brain Stimulation Surgery.","authors":"Michael Schulder, Akash Mishra, Antonios Mammis, Andres Horn, Alexandre Boutet, Patric Blomstedt, Stephan Chabardes, Oliver Flouty, Andres M Lozano, Joseph S Neimat, Francisco Ponce, Philip A Starr, Joachim K Krauss, Marwan Hariz, Jin Woo Chang","doi":"10.1159/000529040","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Deep brain stimulation has become an established technology for the treatment of patients with a wide variety of conditions, including movement disorders, psychiatric disorders, epilepsy, and pain. Surgery for implantation of DBS devices has enhanced our understanding of human physiology, which in turn has led to advances in DBS technology. Our group has previously published on these advances, proposed future developments, and examined evolving indications for DBS.</p><p><strong>Summary: </strong>The crucial roles of structural MR imaging pre-, intra-, and post-DBS procedure in target visualization and confirmation of targeting are described, with discussion of new MR sequences and higher field strength MRI enabling direct visualization of brain targets. The incorporation of functional and connectivity imaging in procedural workup and their contribution to anatomical modelling is reviewed. Various tools for targeting and implanting electrodes, including frame-based, frameless, and robot-assisted, are surveyed, and their pros and cons are described. Updates on brain atlases and various software used for planning target coordinates and trajectories are presented. The pros and cons of asleep versus awake surgery are discussed. The role and value of microelectrode recording and local field potentials are described, as well as the role of intraoperative stimulation. Technical aspects of novel electrode designs and implantable pulse generators are presented and compared.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10184879/pdf/nihms-1890135.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000529040","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Deep brain stimulation has become an established technology for the treatment of patients with a wide variety of conditions, including movement disorders, psychiatric disorders, epilepsy, and pain. Surgery for implantation of DBS devices has enhanced our understanding of human physiology, which in turn has led to advances in DBS technology. Our group has previously published on these advances, proposed future developments, and examined evolving indications for DBS.
Summary: The crucial roles of structural MR imaging pre-, intra-, and post-DBS procedure in target visualization and confirmation of targeting are described, with discussion of new MR sequences and higher field strength MRI enabling direct visualization of brain targets. The incorporation of functional and connectivity imaging in procedural workup and their contribution to anatomical modelling is reviewed. Various tools for targeting and implanting electrodes, including frame-based, frameless, and robot-assisted, are surveyed, and their pros and cons are described. Updates on brain atlases and various software used for planning target coordinates and trajectories are presented. The pros and cons of asleep versus awake surgery are discussed. The role and value of microelectrode recording and local field potentials are described, as well as the role of intraoperative stimulation. Technical aspects of novel electrode designs and implantable pulse generators are presented and compared.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.