Inference of single cell profiles from histology stains with the Single Cell omics from Histology Analysis Framework (SCHAF).

Charles Comiter, Xingjian Chen, Eeshit Dhaval Vaishnav, Koseki J Kobayashi-Kirschvink, Metamia Ciampricotti, Ke Zhang, Jason Murray, Francesco Monticolo, Jianhuan Qi, Ryota Tanaka, Sonia E Brodowska, Bo Li, Yiming Yang, Scott J Rodig, Angeliki Karatza, Alvaro Quintanal Villalonga, Madison Turner, Kathleen L Pfaff, Judit Jané-Valbuena, Michal Slyper, Julia Waldman, Sebastian Vigneau, Jingyi Wu, Timothy R Blosser, Åsa Segerstolpe, Daniel L Abravanel, Nikhil Wagle, Shadmehr Demehri, Xiaowei Zhuang, Charles M Rudin, Johanna Klughammer, Orit Rozenblatt-Rosen, Collin M Stultz, Jian Shu, Aviv Regev
{"title":"Inference of single cell profiles from histology stains with the Single Cell omics from Histology Analysis Framework (SCHAF).","authors":"Charles Comiter, Xingjian Chen, Eeshit Dhaval Vaishnav, Koseki J Kobayashi-Kirschvink, Metamia Ciampricotti, Ke Zhang, Jason Murray, Francesco Monticolo, Jianhuan Qi, Ryota Tanaka, Sonia E Brodowska, Bo Li, Yiming Yang, Scott J Rodig, Angeliki Karatza, Alvaro Quintanal Villalonga, Madison Turner, Kathleen L Pfaff, Judit Jané-Valbuena, Michal Slyper, Julia Waldman, Sebastian Vigneau, Jingyi Wu, Timothy R Blosser, Åsa Segerstolpe, Daniel L Abravanel, Nikhil Wagle, Shadmehr Demehri, Xiaowei Zhuang, Charles M Rudin, Johanna Klughammer, Orit Rozenblatt-Rosen, Collin M Stultz, Jian Shu, Aviv Regev","doi":"10.1101/2023.03.21.533680","DOIUrl":null,"url":null,"abstract":"<p><p>Tissue biology involves an intricate balance between cell-intrinsic processes and interactions between cells organized in specific spatial patterns, which can be respectively captured by single cell profiling methods, such as single cell RNA-seq (scRNA-seq) and spatial transcriptomics, and histology imaging data, such as Hematoxylin-and-Eosin (H&E) stains. While single cell profiles provide rich molecular information, they can be challenging to collect routinely in the clinic and either lack spatial resolution or high gene throughput. Conversely, histological H&E assays have been a cornerstone of tissue pathology for decades, but do not directly report on molecular details, although the observed structure they capture arises from molecules and cells. Here, we leverage vision transformers and adversarial deep learning to develop the Single Cell omics from Histology Analysis Framework (SCHAF), which generates a tissue sample's spatially-resolved whole transcriptome single cell omics dataset from its H&E histology image. We demonstrate SCHAF on a variety of tissues- including lung cancer, metastatic breast cancer, placentae, and whole mouse pups-training with matched samples analyzed by sc/snRNA-seq, H&E staining, and, when available, spatial transcriptomics. SCHAF generated appropriate single cell profiles from histology images in test data, related them spatially, and compared well to ground-truth scRNA-Seq, expert pathologist annotations, or direct spatial transcriptomic measurements, with some limitations. SCHAF opens the way to next-generation H&E analyses and an integrated understanding of cell and tissue biology in health and disease.</p>","PeriodicalId":72407,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10055250/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.03.21.533680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tissue biology involves an intricate balance between cell-intrinsic processes and interactions between cells organized in specific spatial patterns, which can be respectively captured by single cell profiling methods, such as single cell RNA-seq (scRNA-seq) and spatial transcriptomics, and histology imaging data, such as Hematoxylin-and-Eosin (H&E) stains. While single cell profiles provide rich molecular information, they can be challenging to collect routinely in the clinic and either lack spatial resolution or high gene throughput. Conversely, histological H&E assays have been a cornerstone of tissue pathology for decades, but do not directly report on molecular details, although the observed structure they capture arises from molecules and cells. Here, we leverage vision transformers and adversarial deep learning to develop the Single Cell omics from Histology Analysis Framework (SCHAF), which generates a tissue sample's spatially-resolved whole transcriptome single cell omics dataset from its H&E histology image. We demonstrate SCHAF on a variety of tissues- including lung cancer, metastatic breast cancer, placentae, and whole mouse pups-training with matched samples analyzed by sc/snRNA-seq, H&E staining, and, when available, spatial transcriptomics. SCHAF generated appropriate single cell profiles from histology images in test data, related them spatially, and compared well to ground-truth scRNA-Seq, expert pathologist annotations, or direct spatial transcriptomic measurements, with some limitations. SCHAF opens the way to next-generation H&E analyses and an integrated understanding of cell and tissue biology in health and disease.

用组织学分析框架(SCHAF)的单细胞组学推断组织学染色的单细胞谱。
组织生物学涉及细胞内在过程和以特定空间模式组织的细胞之间的相互作用之间的复杂平衡,这可以分别通过单细胞分析方法(如单细胞RNA-seq (scRNA-seq)和空间转录组学)和组织学成像数据(如苏木精和伊红(H&E)染色)捕获。虽然单细胞谱提供了丰富的分子信息,但它们在临床常规收集中可能具有挑战性,并且缺乏空间分辨率或高基因通量。相反,组织学H&E分析几十年来一直是组织病理学的基础,但不直接报告分子细节,尽管它们捕获的观察结构来自分子和细胞。在这里,我们利用视觉转换和对抗性深度学习来开发来自组织学分析框架(SCHAF)的单细胞组学,该框架从组织样本的H&E组织学图像生成空间分辨的全转录组单细胞组学数据集。我们证明了SCHAF在多种组织上的作用,包括肺癌、转移性乳腺癌、胎盘和全鼠幼鼠,通过sc/snRNA-seq、H&E染色和空间转录组学分析匹配样本。SCHAF从测试数据中的组织学图像中生成适当的单细胞图谱,将它们在空间上联系起来,并与真实的scRNA-Seq、专家病理学家注释或直接的空间转录组测量进行比较,但存在一些局限性。SCHAF为下一代健康与健康分析开辟了道路,并对健康和疾病中的细胞和组织生物学进行了综合理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信