Suwei Wang, Cara J Arizmendi, Dandan Chen, Li Lin, Dan V Blalock, I-Chan Huang, David Thissen, Darren A DeWalt, Wei Pan, Bryce B Reeve
{"title":"Applying latent profile analysis to identify adolescents and young adults with chronic conditions at risk for poor health-related quality of life.","authors":"Suwei Wang, Cara J Arizmendi, Dandan Chen, Li Lin, Dan V Blalock, I-Chan Huang, David Thissen, Darren A DeWalt, Wei Pan, Bryce B Reeve","doi":"10.1080/10543406.2023.2210684","DOIUrl":null,"url":null,"abstract":"<p><p>The impact of chronic diseases on health-related quality of life (HRQOL) in adolescents and young adults (AYAs) is understudied. Latent profile analysis (LPA) can identify profiles of AYAs based on their HRQOL scores reflecting physical, mental, and social well-being. This paper will (1) demonstrate how to use LPA to identify profiles of AYAs based on their scores on multiple HRQOL indicators; (2) explore associations of demographic and clinical factors with LPA-identified HRQOL profiles of AYAs; and (3) provide guidance on the selection of adult or pediatric versions of Patient-Reported Outcomes Measurement Information System® (PROMIS®) in AYAs. A total of 872 AYAs with chronic conditions completed the adult and pediatric versions of PROMIS measures of anger, anxiety, depression, fatigue, pain interference, social health, and physical function. The optimal number of LPA profiles was determined by model fit statistics and clinical interpretability. Multinomial regression models examined clinical and demographic factors associated with profile membership. As a result of the LPA, AYAs were categorized into 3 profiles: Minimal, Moderate, and Severe HRQOL Impact profiles. Comparing LPA results using either the pediatric or adult PROMIS T-scores found approximately 71% of patients were placed in the same HRQOL profiles. AYAs who were female, had hypertension, mental health conditions, chronic pain, and those on medication were more likely to be placed in the Severe HRQOL Impact Profile. Our findings may facilitate clinicians to screen AYAs who may have low HRQOL due to diseases or treatments with the identified risk factors without implementing the HRQOL assessment.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"888-901"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2023.2210684","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/14 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The impact of chronic diseases on health-related quality of life (HRQOL) in adolescents and young adults (AYAs) is understudied. Latent profile analysis (LPA) can identify profiles of AYAs based on their HRQOL scores reflecting physical, mental, and social well-being. This paper will (1) demonstrate how to use LPA to identify profiles of AYAs based on their scores on multiple HRQOL indicators; (2) explore associations of demographic and clinical factors with LPA-identified HRQOL profiles of AYAs; and (3) provide guidance on the selection of adult or pediatric versions of Patient-Reported Outcomes Measurement Information System® (PROMIS®) in AYAs. A total of 872 AYAs with chronic conditions completed the adult and pediatric versions of PROMIS measures of anger, anxiety, depression, fatigue, pain interference, social health, and physical function. The optimal number of LPA profiles was determined by model fit statistics and clinical interpretability. Multinomial regression models examined clinical and demographic factors associated with profile membership. As a result of the LPA, AYAs were categorized into 3 profiles: Minimal, Moderate, and Severe HRQOL Impact profiles. Comparing LPA results using either the pediatric or adult PROMIS T-scores found approximately 71% of patients were placed in the same HRQOL profiles. AYAs who were female, had hypertension, mental health conditions, chronic pain, and those on medication were more likely to be placed in the Severe HRQOL Impact Profile. Our findings may facilitate clinicians to screen AYAs who may have low HRQOL due to diseases or treatments with the identified risk factors without implementing the HRQOL assessment.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.