Indirect Mechanisms of Transcription Factor-Mediated Gene Regulation during Cell Fate Changes

Michael R. Larcombe, Sheng Hsu, Jose M. Polo, Anja S. Knaupp
{"title":"Indirect Mechanisms of Transcription Factor-Mediated Gene Regulation during Cell Fate Changes","authors":"Michael R. Larcombe,&nbsp;Sheng Hsu,&nbsp;Jose M. Polo,&nbsp;Anja S. Knaupp","doi":"10.1002/ggn2.202200015","DOIUrl":null,"url":null,"abstract":"<p>Transcription factors (TFs) are the master regulators of cellular identity, capable of driving cell fate transitions including differentiations, reprogramming, and transdifferentiations. Pioneer TFs recognize partial motifs exposed on nucleosomal DNA, allowing for TF-mediated activation of repressed chromatin. Moreover, there is evidence suggesting that certain TFs can repress actively expressed genes either directly through interactions with accessible regulatory elements or indirectly through mechanisms that impact the expression, activity, or localization of other regulatory factors. Recent evidence suggests that during reprogramming, the reprogramming TFs initiate opening of chromatin regions rich in somatic TF motifs that are inaccessible in the initial and final cellular states. It is postulated that analogous to a sponge, these transiently accessible regions “soak up” somatic TFs, hence lowering the initial barriers to cell fate changes. This indirect TF-mediated gene regulation event, which is aptly named the “sponge effect,” may play an essential role in the silencing of the somatic transcriptional network during different cellular conversions.</p>","PeriodicalId":72071,"journal":{"name":"Advanced genetics (Hoboken, N.J.)","volume":"3 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9993476/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced genetics (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ggn2.202200015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Transcription factors (TFs) are the master regulators of cellular identity, capable of driving cell fate transitions including differentiations, reprogramming, and transdifferentiations. Pioneer TFs recognize partial motifs exposed on nucleosomal DNA, allowing for TF-mediated activation of repressed chromatin. Moreover, there is evidence suggesting that certain TFs can repress actively expressed genes either directly through interactions with accessible regulatory elements or indirectly through mechanisms that impact the expression, activity, or localization of other regulatory factors. Recent evidence suggests that during reprogramming, the reprogramming TFs initiate opening of chromatin regions rich in somatic TF motifs that are inaccessible in the initial and final cellular states. It is postulated that analogous to a sponge, these transiently accessible regions “soak up” somatic TFs, hence lowering the initial barriers to cell fate changes. This indirect TF-mediated gene regulation event, which is aptly named the “sponge effect,” may play an essential role in the silencing of the somatic transcriptional network during different cellular conversions.

Abstract Image

细胞命运变化中转录因子介导的基因调控的间接机制
转录因子(tf)是细胞身份的主要调节因子,能够驱动细胞命运的转变,包括分化、重编程和转分化。先锋tf识别暴露在核小体DNA上的部分基序,允许tf介导的被抑制染色质的激活。此外,有证据表明,某些tf可以通过与可接近的调控元件的相互作用直接抑制活跃表达的基因,也可以通过影响其他调控因子的表达、活性或定位的机制间接抑制。最近的证据表明,在重编程过程中,重编程TF启动了富含体细胞TF基序的染色质区域的开放,这些染色质区域在细胞初始和最终状态下是无法进入的。据推测,与海绵类似,这些可瞬时进入的区域“吸收”了体细胞tf,从而降低了细胞命运改变的初始障碍。这种间接的tf介导的基因调控事件,被恰当地命名为“海绵效应”,可能在不同细胞转化过程中对体细胞转录网络的沉默起着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信