Kenneth C Riley, Alaa Koleilat, Joseph A Dugdale, Shawna A Cooper, Trace A Christensen, Lisa A Schimmenti
{"title":"Three-Dimensional Structure of Inner Ear Hair Cell Ribbon Synapses in a Zebrafish Model of Usher Syndrome Type 1B.","authors":"Kenneth C Riley, Alaa Koleilat, Joseph A Dugdale, Shawna A Cooper, Trace A Christensen, Lisa A Schimmenti","doi":"10.1089/zeb.2022.0049","DOIUrl":null,"url":null,"abstract":"<p><p>Our understanding of inner ear hair cell ultrastructure has heretofore relied upon two-dimensional imaging; however, serial block-face scanning electron microscopy (SBFSEM) changes this paradigm allowing for three-dimensional evaluation. We compared inner ear hair cells of the apical cristae in <i>myo7aa<sup>-/-</sup></i> null zebrafish, a model of human Usher Syndrome type 1B, to hair cells in wild-type zebrafish by SBFSEM to investigate possible ribbon synapse ultrastructural differences. Previously, it has been shown that compared to wild type, <i>myo7aa<sup>-/-</sup></i> zebrafish neuromast hair cells have fewer ribbon synapses yet similar ribbon areas. We expect the recapitulation of these results within the inner ear apical crista hair cells furthering the knowledge of three-dimensional ribbon synapse structure while resolving the feasibility of therapeutically targeting <i>myo7aa<sup>-/-</sup></i> mutant ribbons. In this report, we evaluated ribbon synapse number, volume, surface area, and sphericity. Localization of ribbons and their distance from the nearest innervation were also evaluated. We determined that <i>myo7aa<sup>-/-</sup></i> mutant ribbon synapses are smaller in volume and surface area; however, all other measurements were not significantly different from wild-type zebrafish. Because the ribbon synapses are nearly indistinguishable between the <i>myo7aa<sup>-/-</sup></i> mutant and wild type, it suggests that the ribbons are structurally receptive, supporting that therapeutic intervention may be feasible.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/zeb.2022.0049","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Our understanding of inner ear hair cell ultrastructure has heretofore relied upon two-dimensional imaging; however, serial block-face scanning electron microscopy (SBFSEM) changes this paradigm allowing for three-dimensional evaluation. We compared inner ear hair cells of the apical cristae in myo7aa-/- null zebrafish, a model of human Usher Syndrome type 1B, to hair cells in wild-type zebrafish by SBFSEM to investigate possible ribbon synapse ultrastructural differences. Previously, it has been shown that compared to wild type, myo7aa-/- zebrafish neuromast hair cells have fewer ribbon synapses yet similar ribbon areas. We expect the recapitulation of these results within the inner ear apical crista hair cells furthering the knowledge of three-dimensional ribbon synapse structure while resolving the feasibility of therapeutically targeting myo7aa-/- mutant ribbons. In this report, we evaluated ribbon synapse number, volume, surface area, and sphericity. Localization of ribbons and their distance from the nearest innervation were also evaluated. We determined that myo7aa-/- mutant ribbon synapses are smaller in volume and surface area; however, all other measurements were not significantly different from wild-type zebrafish. Because the ribbon synapses are nearly indistinguishable between the myo7aa-/- mutant and wild type, it suggests that the ribbons are structurally receptive, supporting that therapeutic intervention may be feasible.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.