Haritha Kunhiraman, Leon McSwain, Shubin W Shahab, Timothy R Gershon, Tobey J MacDonald, Anna Marie Kenney
{"title":"IGFBP2 promotes proliferation and cell migration through STAT3 signaling in Sonic hedgehog medulloblastoma.","authors":"Haritha Kunhiraman, Leon McSwain, Shubin W Shahab, Timothy R Gershon, Tobey J MacDonald, Anna Marie Kenney","doi":"10.1186/s40478-023-01557-2","DOIUrl":null,"url":null,"abstract":"<p><p>Medulloblastoma (MB) is the most common pediatric brain malignancy and is divided into four molecularly distinct subgroups: WNT, Sonic Hedgehog (SHHp53mut and SHHp53wt), Group 3, and Group 4. Previous reports suggest that SHH MB features a unique tumor microenvironment compared with other MB groups. To better understand how SHH MB tumor cells interact with and potentially modify their microenvironment, we performed cytokine array analysis of culture media from freshly isolated MB patient tumor cells, spontaneous SHH MB mouse tumor cells and mouse and human MB cell lines. We found that the SHH MB cells produced elevated levels of IGFBP2 compared to non-SHH MBs. We confirmed these results using ELISA, western blotting, and immunofluorescence staining. IGFBP2 is a pleiotropic member of the IGFBP super-family with secreted and intracellular functions that can modulate tumor cell proliferation, metastasis, and drug resistance, but has been understudied in medulloblastoma. We found that IGFBP2 is required for SHH MB cell proliferation, colony formation, and cell migration, through promoting STAT3 activation and upregulation of epithelial to mesenchymal transition markers; indeed, ectopic STAT3 expression fully compensated for IGFBP2 knockdown in wound healing assays. Taken together, our findings reveal novel roles for IGFBP2 in SHH medulloblastoma growth and metastasis, which is associated with very poor prognosis, and they indicate an IGFBP2-STAT3 axis that could represent a novel therapeutic target in medulloblastoma.</p>","PeriodicalId":6914,"journal":{"name":"Acta Neuropathologica Communications","volume":"11 1","pages":"62"},"PeriodicalIF":6.2000,"publicationDate":"2023-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10082504/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Neuropathologica Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40478-023-01557-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Medulloblastoma (MB) is the most common pediatric brain malignancy and is divided into four molecularly distinct subgroups: WNT, Sonic Hedgehog (SHHp53mut and SHHp53wt), Group 3, and Group 4. Previous reports suggest that SHH MB features a unique tumor microenvironment compared with other MB groups. To better understand how SHH MB tumor cells interact with and potentially modify their microenvironment, we performed cytokine array analysis of culture media from freshly isolated MB patient tumor cells, spontaneous SHH MB mouse tumor cells and mouse and human MB cell lines. We found that the SHH MB cells produced elevated levels of IGFBP2 compared to non-SHH MBs. We confirmed these results using ELISA, western blotting, and immunofluorescence staining. IGFBP2 is a pleiotropic member of the IGFBP super-family with secreted and intracellular functions that can modulate tumor cell proliferation, metastasis, and drug resistance, but has been understudied in medulloblastoma. We found that IGFBP2 is required for SHH MB cell proliferation, colony formation, and cell migration, through promoting STAT3 activation and upregulation of epithelial to mesenchymal transition markers; indeed, ectopic STAT3 expression fully compensated for IGFBP2 knockdown in wound healing assays. Taken together, our findings reveal novel roles for IGFBP2 in SHH medulloblastoma growth and metastasis, which is associated with very poor prognosis, and they indicate an IGFBP2-STAT3 axis that could represent a novel therapeutic target in medulloblastoma.
期刊介绍:
"Acta Neuropathologica Communications (ANC)" is a peer-reviewed journal that specializes in the rapid publication of research articles focused on the mechanisms underlying neurological diseases. The journal emphasizes the use of molecular, cellular, and morphological techniques applied to experimental or human tissues to investigate the pathogenesis of neurological disorders.
ANC is committed to a fast-track publication process, aiming to publish accepted manuscripts within two months of submission. This expedited timeline is designed to ensure that the latest findings in neuroscience and pathology are disseminated quickly to the scientific community, fostering rapid advancements in the field of neurology and neuroscience. The journal's focus on cutting-edge research and its swift publication schedule make it a valuable resource for researchers, clinicians, and other professionals interested in the study and treatment of neurological conditions.