Mitochondrial Transplantation and Immune Response of Human Bone Marrow Mesenchymal Stem Cells for the Therapeutic of Ischemic Stroke.

IF 2.1 4区 医学 Q4 CELL & TISSUE ENGINEERING
Yidong Liao, Jiang Ming, Wenxue Song, Guangtang Chen, Junshuan Cui, Longcai He, Zili Wang, Xudong Wang, Mingsong Xiong, Hua Yang, Kaya Xu
{"title":"Mitochondrial Transplantation and Immune Response of Human Bone Marrow Mesenchymal Stem Cells for the Therapeutic of Ischemic Stroke.","authors":"Yidong Liao, Jiang Ming, Wenxue Song, Guangtang Chen, Junshuan Cui, Longcai He, Zili Wang, Xudong Wang, Mingsong Xiong, Hua Yang, Kaya Xu","doi":"10.2174/1574888X18666230505103407","DOIUrl":null,"url":null,"abstract":"<p><p>Ischemic stroke is the leading cause of death and disability worldwide, with increasing incidence and mortality, imposing a significant social and economic burden on patients and their families. However, cerebral vascular occlusion leads to acute loss of neurons and destruction of synaptic structures. The limited treatment options cannot adequately address intra-neuronal mitochondrial dysfunction due to stroke. Therefore, stem cell-derived mitochondria transplantation plays an important role in neuronal protection and recovery after stroke, when combined with the intracranial and extracranial immunoregulatory effects of stem cell therapy, revealing the mechanism of transferred mitochondria in stem cells in protecting neurological function among chronic-phase ischemic stroke by affecting the endogenous apoptotic pathway of neuronal cells. This research elaborated on the mitochondrial dysfunction in neurons after ischemic stroke, followed by human bone marrow mesenchymal stem cells (hBMSC) rescued damaged neurons by mitochondrial transfer through tunneling nanotubes (TNTs), and the immunomodulatory effect of the preferential transfer of stem cells to the spleen when transplanted into the body.which created an immune environment for nerve repair, as well as improved neurological recovery after the chronic phase of stroke. This review is expected to provide a novel idea for applying intracranial stem cell transplantation in chronic-phase ischemic stroke treatment.</p>","PeriodicalId":10979,"journal":{"name":"Current stem cell research & therapy","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current stem cell research & therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1574888X18666230505103407","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Ischemic stroke is the leading cause of death and disability worldwide, with increasing incidence and mortality, imposing a significant social and economic burden on patients and their families. However, cerebral vascular occlusion leads to acute loss of neurons and destruction of synaptic structures. The limited treatment options cannot adequately address intra-neuronal mitochondrial dysfunction due to stroke. Therefore, stem cell-derived mitochondria transplantation plays an important role in neuronal protection and recovery after stroke, when combined with the intracranial and extracranial immunoregulatory effects of stem cell therapy, revealing the mechanism of transferred mitochondria in stem cells in protecting neurological function among chronic-phase ischemic stroke by affecting the endogenous apoptotic pathway of neuronal cells. This research elaborated on the mitochondrial dysfunction in neurons after ischemic stroke, followed by human bone marrow mesenchymal stem cells (hBMSC) rescued damaged neurons by mitochondrial transfer through tunneling nanotubes (TNTs), and the immunomodulatory effect of the preferential transfer of stem cells to the spleen when transplanted into the body.which created an immune environment for nerve repair, as well as improved neurological recovery after the chronic phase of stroke. This review is expected to provide a novel idea for applying intracranial stem cell transplantation in chronic-phase ischemic stroke treatment.

用于治疗缺血性中风的人骨髓间充质干细胞的线粒体移植和免疫反应。
缺血性中风是全球死亡和残疾的主要原因,其发病率和死亡率不断上升,给患者及其家庭带来了巨大的社会和经济负担。然而,脑血管闭塞会导致神经元的急性缺失和突触结构的破坏。有限的治疗方案无法充分解决中风导致的神经元内线粒体功能障碍。因此,干细胞线粒体移植与干细胞治疗的颅内外免疫调节作用相结合,在脑卒中后神经元保护和恢复中发挥着重要作用,揭示了干细胞线粒体移植通过影响神经细胞内源性凋亡途径保护慢性期缺血性脑卒中神经功能的机制。该研究阐述了缺血性脑卒中后神经元线粒体功能障碍,随后人骨髓间充质干细胞(hBMSC)通过隧道纳米管(TNTs)转移线粒体挽救受损神经元,以及干细胞移植到脾脏后优先转移到体内的免疫调节作用,为神经修复创造了免疫环境,并改善了脑卒中慢性期后的神经功能恢复。这篇综述有望为颅内干细胞移植在慢性期缺血性中风治疗中的应用提供新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current stem cell research & therapy
Current stem cell research & therapy CELL & TISSUE ENGINEERING-CELL BIOLOGY
CiteScore
4.20
自引率
3.70%
发文量
197
审稿时长
>12 weeks
期刊介绍: Current Stem Cell Research & Therapy publishes high quality frontier reviews, drug clinical trial studies and guest edited issues on all aspects of basic research on stem cells and their uses in clinical therapy. The journal is essential reading for all researchers and clinicians involved in stem cells research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信