Exosome-mediated Repair of Intervertebral Disc Degeneration: The Potential Role of miRNAs.

IF 2.1 4区 医学 Q4 CELL & TISSUE ENGINEERING
Han-Shi Wang, Shu Lin, Hai-Ming Yu
{"title":"Exosome-mediated Repair of Intervertebral Disc Degeneration: The Potential Role of miRNAs.","authors":"Han-Shi Wang, Shu Lin, Hai-Ming Yu","doi":"10.2174/1574888X18666230504094233","DOIUrl":null,"url":null,"abstract":"<p><p>Intervertebral disc degeneration (IVDD) is a serious condition that manifests as low back pain, intervertebral disc protrusion, and spinal canal stenosis. At present, the main treatment methods for IVDD are surgical interventions such as discectomy, total disc replacement, and spinal fusion. However, these interventions have shown limitations, such as recurrent lumbar disc herniation after discectomy, lesions in adjacent segments, and failure of fixation. To overcome these shortcomings, researchers have been exploring stem cell transplantation therapy, such as mesenchymal stem cell (MSC) transplantation, but the treatment results are still controversial. Therefore, researchers are in search of new methods that are more efficient and have better outcomes. The exosomes from stem cells contain a variety of bioactive molecules that mediate cell interactions, and these components have been investigated for their potential therapeutic role in the repair of various tissue injuries. Recent studies have shown that MSC-derived miRNAs in exosomes and vesicles have therapeutic effects on nucleus pulposus cells, annulus fibrosus, and cartilage endplate. miRNAs play a role in many cell activities, such as cell proliferation, apoptosis, and cytokine release, by acting on mRNA translation, and they may have immense therapeutic potential, especially when combined with stem cell therapy. This article reviews the current status of research on intervertebral disc repair, especially with regard to the latest research findings on the molecular biological mechanisms of miRNAs in MSC-derived exosomes in intervertebral disc repair.</p>","PeriodicalId":10979,"journal":{"name":"Current stem cell research & therapy","volume":" ","pages":"798-808"},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current stem cell research & therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1574888X18666230504094233","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Intervertebral disc degeneration (IVDD) is a serious condition that manifests as low back pain, intervertebral disc protrusion, and spinal canal stenosis. At present, the main treatment methods for IVDD are surgical interventions such as discectomy, total disc replacement, and spinal fusion. However, these interventions have shown limitations, such as recurrent lumbar disc herniation after discectomy, lesions in adjacent segments, and failure of fixation. To overcome these shortcomings, researchers have been exploring stem cell transplantation therapy, such as mesenchymal stem cell (MSC) transplantation, but the treatment results are still controversial. Therefore, researchers are in search of new methods that are more efficient and have better outcomes. The exosomes from stem cells contain a variety of bioactive molecules that mediate cell interactions, and these components have been investigated for their potential therapeutic role in the repair of various tissue injuries. Recent studies have shown that MSC-derived miRNAs in exosomes and vesicles have therapeutic effects on nucleus pulposus cells, annulus fibrosus, and cartilage endplate. miRNAs play a role in many cell activities, such as cell proliferation, apoptosis, and cytokine release, by acting on mRNA translation, and they may have immense therapeutic potential, especially when combined with stem cell therapy. This article reviews the current status of research on intervertebral disc repair, especially with regard to the latest research findings on the molecular biological mechanisms of miRNAs in MSC-derived exosomes in intervertebral disc repair.

外泌体介导的椎间盘退化修复:miRNAs 的潜在作用
椎间盘退变(IVDD)是一种严重的疾病,主要表现为腰痛、椎间盘突出和椎管狭窄。目前,治疗 IVDD 的主要方法是手术干预,如椎间盘切除术、全椎间盘置换术和脊柱融合术。然而,这些治疗方法都存在局限性,如椎间盘切除术后复发腰椎间盘突出症、邻近节段病变、固定失败等。为了克服这些缺陷,研究人员一直在探索干细胞移植疗法,如间充质干细胞(MSC)移植,但治疗效果仍存在争议。因此,研究人员正在寻找更有效、疗效更好的新方法。来自干细胞的外泌体含有多种介导细胞相互作用的生物活性分子,这些成分在修复各种组织损伤中的潜在治疗作用已被研究。最近的研究表明,间充质干细胞衍生的外泌体和囊泡中的miRNA对髓核细胞、纤维环和软骨终板有治疗作用。miRNA通过作用于mRNA翻译,在细胞增殖、凋亡和细胞因子释放等多种细胞活动中发挥作用,可能具有巨大的治疗潜力,尤其是与干细胞疗法相结合时。本文综述了椎间盘修复的研究现状,尤其是间充质干细胞衍生的外泌体中的miRNA在椎间盘修复中的分子生物学机制的最新研究成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current stem cell research & therapy
Current stem cell research & therapy CELL & TISSUE ENGINEERING-CELL BIOLOGY
CiteScore
4.20
自引率
3.70%
发文量
197
审稿时长
>12 weeks
期刊介绍: Current Stem Cell Research & Therapy publishes high quality frontier reviews, drug clinical trial studies and guest edited issues on all aspects of basic research on stem cells and their uses in clinical therapy. The journal is essential reading for all researchers and clinicians involved in stem cells research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信