Aman Ladak, Roger J Hajjar, Srinivas Murali, Jeremy J Michalek, Cameron N Riviere
{"title":"Cable Tension Optimization for an Epicardial Parallel Wire Robot.","authors":"Aman Ladak, Roger J Hajjar, Srinivas Murali, Jeremy J Michalek, Cameron N Riviere","doi":"10.1115/1.4056866","DOIUrl":null,"url":null,"abstract":"<p><p>HeartPrinter is a novel under-constrained 3-cable parallel wire robot designed for minimally invasive epicardial interventions. The robot adheres to the beating heart using vacuum suction at its anchor points, with a central injector head that operates within the triangular workspace formed by the anchors, and is actuated by cables for multipoint direct gene therapy injections. Minimizing cable tensions can reduce forces on the heart at the anchor points while supporting rapid delivery of accurate injections and minimizing procedure time, risk of damage to the robot, and strain to the heart. However, cable tensions must be sufficient to hold the injector head's position as the heart moves and to prevent excessive cable slack. We pose a linear optimization problem to minimize the sum of cable tension magnitudes for HeartPrinter while ensuring the injector head is held in static equilibrium and the tensions are constrained within a feasible range. We use Karush-Kuhn-Tucker optimality conditions to derive conditional algebraic expressions for optimal cable tensions as a function of injector head position and workspace geometry, and we identify regions of injector head positions where particular combinations of cable tensions are optimally at minimum allowable tensions. The approach can rapidly solve for the minimum set of cable tensions for any robot workspace geometry and injector head position and determine whether an injection site is attainable.</p>","PeriodicalId":49305,"journal":{"name":"Journal of Medical Devices-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10158971/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Devices-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056866","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/17 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
HeartPrinter is a novel under-constrained 3-cable parallel wire robot designed for minimally invasive epicardial interventions. The robot adheres to the beating heart using vacuum suction at its anchor points, with a central injector head that operates within the triangular workspace formed by the anchors, and is actuated by cables for multipoint direct gene therapy injections. Minimizing cable tensions can reduce forces on the heart at the anchor points while supporting rapid delivery of accurate injections and minimizing procedure time, risk of damage to the robot, and strain to the heart. However, cable tensions must be sufficient to hold the injector head's position as the heart moves and to prevent excessive cable slack. We pose a linear optimization problem to minimize the sum of cable tension magnitudes for HeartPrinter while ensuring the injector head is held in static equilibrium and the tensions are constrained within a feasible range. We use Karush-Kuhn-Tucker optimality conditions to derive conditional algebraic expressions for optimal cable tensions as a function of injector head position and workspace geometry, and we identify regions of injector head positions where particular combinations of cable tensions are optimally at minimum allowable tensions. The approach can rapidly solve for the minimum set of cable tensions for any robot workspace geometry and injector head position and determine whether an injection site is attainable.
期刊介绍:
The Journal of Medical Devices presents papers on medical devices that improve diagnostic, interventional and therapeutic treatments focusing on applied research and the development of new medical devices or instrumentation. It provides special coverage of novel devices that allow new surgical strategies, new methods of drug delivery, or possible reductions in the complexity, cost, or adverse results of health care. The Design Innovation category features papers focusing on novel devices, including papers with limited clinical or engineering results. The Medical Device News section provides coverage of advances, trends, and events.