Effects of CYP2C9 and CYP2C19 genetic polymorphisms on the pharmacokinetics and pharmacodynamics of gliclazide in healthy subjects

IF 6.9 3区 医学 Q1 CHEMISTRY, MEDICINAL
Pureum Kang, Chang-Keun Cho, Choon-Gon Jang, Seok-Yong Lee, Yun Jeong Lee, Chang-Ik Choi, Jung-Woo Bae
{"title":"Effects of CYP2C9 and CYP2C19 genetic polymorphisms on the pharmacokinetics and pharmacodynamics of gliclazide in healthy subjects","authors":"Pureum Kang,&nbsp;Chang-Keun Cho,&nbsp;Choon-Gon Jang,&nbsp;Seok-Yong Lee,&nbsp;Yun Jeong Lee,&nbsp;Chang-Ik Choi,&nbsp;Jung-Woo Bae","doi":"10.1007/s12272-023-01448-z","DOIUrl":null,"url":null,"abstract":"<div><p>Gliclazide metabolism is mediated by genetically polymorphic CYP2C9 and CYP2C19 enzymes. We investigated the effects of <i>CYP2C9</i> and <i>CYP2C19</i> genetic polymorphisms on the pharmacokinetics and pharmacodynamics of gliclazide. Twenty-seven Korean healthy volunteers were administered a single oral dose of gliclazide 80 mg. The plasma concentration of gliclazide was quantified for the pharmacokinetic analysis and plasma concentrations of glucose and insulin were measured as pharmacodynamic parameters. The pharmacokinetics of gliclazide showed a significant difference according to the number of defective alleles of combined <i>CYP2C9</i> and <i>CYP2C19</i>. The two defective alleles group (group 3) and one defective allele group (group 2) showed 2.34- and 1.46-fold higher AUC<sub>0–∞</sub> (<i>P</i> &lt; 0.001), and 57.1 and 32.3% lower CL/F (<i>P</i> &lt; 0.001), compared to those of the no defective allele group (group 1), respectively. The <i>CYP2C9IM–</i><i>CYP2C19IM</i> group had AUC<sub>0–∞</sub> increase of 1.49-fold (<i>P</i> &lt; 0.05) and CL/F decrease by 29.9% (<i>P</i> &lt; 0.01), compared with the <i>CYP2C9 Normal Metabolizer</i> (<i>CYP2C9NM</i>)–<i>CYP2C19IM</i> group. The <i>CYP2C9NM–CYP2C19PM</i> group and <i>CYP2C9NM–CYP2C19IM</i> group showed 2.41- and 1.51-fold higher AUC<sub>0–∞</sub> (<i>P</i> &lt; 0.001), and 59.6 and 35.4% lower CL/F (<i>P</i> &lt; 0.001), compared to those of the <i>CYP2C9NM–CYP2C19NM</i> group, respectively. The results represented that <i>CYP2C9</i> and <i>CYP2C19</i> genetic polymorphisms significantly affected the pharmacokinetics of gliclazide. Although the genetic polymorphism of <i>CYP2C19</i> had a greater effect on the pharmacokinetics of gliclazide, the genetic polymorphism of <i>CYP2C9</i> also had a significant effect. On the other hand, plasma glucose and insulin responses to gliclazide were not significantly affected by the <i>CYP2C9–CYP2C19</i> genotypes, requiring further well-controlled studies with long-term dosing of gliclazide in diabetic patients.\n</p></div>","PeriodicalId":8287,"journal":{"name":"Archives of Pharmacal Research","volume":"46 5","pages":"438 - 447"},"PeriodicalIF":6.9000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12272-023-01448-z.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Pharmacal Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12272-023-01448-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 1

Abstract

Gliclazide metabolism is mediated by genetically polymorphic CYP2C9 and CYP2C19 enzymes. We investigated the effects of CYP2C9 and CYP2C19 genetic polymorphisms on the pharmacokinetics and pharmacodynamics of gliclazide. Twenty-seven Korean healthy volunteers were administered a single oral dose of gliclazide 80 mg. The plasma concentration of gliclazide was quantified for the pharmacokinetic analysis and plasma concentrations of glucose and insulin were measured as pharmacodynamic parameters. The pharmacokinetics of gliclazide showed a significant difference according to the number of defective alleles of combined CYP2C9 and CYP2C19. The two defective alleles group (group 3) and one defective allele group (group 2) showed 2.34- and 1.46-fold higher AUC0–∞ (P < 0.001), and 57.1 and 32.3% lower CL/F (P < 0.001), compared to those of the no defective allele group (group 1), respectively. The CYP2C9IM–CYP2C19IM group had AUC0–∞ increase of 1.49-fold (P < 0.05) and CL/F decrease by 29.9% (P < 0.01), compared with the CYP2C9 Normal Metabolizer (CYP2C9NM)–CYP2C19IM group. The CYP2C9NM–CYP2C19PM group and CYP2C9NM–CYP2C19IM group showed 2.41- and 1.51-fold higher AUC0–∞ (P < 0.001), and 59.6 and 35.4% lower CL/F (P < 0.001), compared to those of the CYP2C9NM–CYP2C19NM group, respectively. The results represented that CYP2C9 and CYP2C19 genetic polymorphisms significantly affected the pharmacokinetics of gliclazide. Although the genetic polymorphism of CYP2C19 had a greater effect on the pharmacokinetics of gliclazide, the genetic polymorphism of CYP2C9 also had a significant effect. On the other hand, plasma glucose and insulin responses to gliclazide were not significantly affected by the CYP2C9–CYP2C19 genotypes, requiring further well-controlled studies with long-term dosing of gliclazide in diabetic patients.

Abstract Image

CYP2C9和CYP2C19基因多态性对格列齐特在健康人体内药代动力学和药效学的影响
格列齐特代谢是由基因多态性CYP2C9和CYP2C19酶介导的。我们研究了CYP2C9和CYP2C19基因多态性对格列齐特药代动力学和药效学的影响。27名韩国健康志愿者口服单剂量格列齐特80毫克。定量测定血浆格列齐特浓度进行药代动力学分析,测定血浆葡萄糖和胰岛素浓度作为药效学参数。根据CYP2C9和CYP2C19联合缺陷等位基因的数量,格列齐特的药代动力学有显著差异。2个缺陷等位基因组(3组)和1个缺陷等位基因组(2组)的AUC0 -∞分别比无缺陷等位基因组(1组)高2.34倍和1.46倍(P < 0.001), CL/F分别比无缺陷等位基因组(1组)低57.1倍和32.3% (P < 0.001)。与CYP2C9正常代谢产物(CYP2C9NM) - cyp2c19im组相比,CYP2C9IM-CYP2C19IM组AUC0 -∞升高1.49倍(P < 0.05), CL/F降低29.9% (P < 0.01)。CYP2C9NM-CYP2C19PM组和CYP2C9NM-CYP2C19IM组AUC0 -∞分别比CYP2C9NM-CYP2C19NM组高2.41倍和1.51倍(P < 0.001), CL/F分别比CYP2C9NM-CYP2C19NM组低59.6%和35.4% (P < 0.001)。结果表明,CYP2C9和CYP2C19基因多态性显著影响格列齐特的药代动力学。虽然CYP2C19基因多态性对格列齐特的药代动力学影响较大,但CYP2C9基因多态性也有显著影响。另一方面,血浆葡萄糖和胰岛素对格列齐特的反应不受CYP2C9-CYP2C19基因型的显著影响,需要进一步对糖尿病患者长期给药格列齐特进行良好的对照研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
13.40
自引率
9.00%
发文量
48
审稿时长
3.3 months
期刊介绍: Archives of Pharmacal Research is the official journal of the Pharmaceutical Society of Korea and has been published since 1976. Archives of Pharmacal Research is an interdisciplinary journal devoted to the publication of original scientific research papers and reviews in the fields of drug discovery, drug development, and drug actions with a view to providing fundamental and novel information on drugs and drug candidates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信