An AI-based framework for studying visual diversity of urban neighborhoods and its relationship with socio-demographic variables.

IF 2 Q2 SOCIAL SCIENCES, MATHEMATICAL METHODS
Md Amiruzzaman, Ye Zhao, Stefanie Amiruzzaman, Aryn C Karpinski, Tsung Heng Wu
{"title":"An AI-based framework for studying visual diversity of urban neighborhoods and its relationship with socio-demographic variables.","authors":"Md Amiruzzaman,&nbsp;Ye Zhao,&nbsp;Stefanie Amiruzzaman,&nbsp;Aryn C Karpinski,&nbsp;Tsung Heng Wu","doi":"10.1007/s42001-022-00197-1","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a framework to study quantitatively geographical visual diversities of urban neighborhood from a large collection of street-view images using an Artificial Intelligence (AI)-based image segmentation technique. A variety of diversity indices are computed from the extracted visual semantics. They are utilized to discover the relationships between urban visual appearance and socio-demographic variables. This study also validates the reliability of the method with human evaluators. The methodology and results obtained from this study can potentially be used to study urban features, locate houses, establish services, and better operate municipalities.</p>","PeriodicalId":29946,"journal":{"name":"Journal of Computational Social Science","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9795947/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Social Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s42001-022-00197-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a framework to study quantitatively geographical visual diversities of urban neighborhood from a large collection of street-view images using an Artificial Intelligence (AI)-based image segmentation technique. A variety of diversity indices are computed from the extracted visual semantics. They are utilized to discover the relationships between urban visual appearance and socio-demographic variables. This study also validates the reliability of the method with human evaluators. The methodology and results obtained from this study can potentially be used to study urban features, locate houses, establish services, and better operate municipalities.

Abstract Image

Abstract Image

Abstract Image

基于人工智能的城市社区视觉多样性研究框架及其与社会人口变量的关系。
本研究提出了一个框架,利用基于人工智能(AI)的图像分割技术,从大量街景图像中定量研究城市街区的地理视觉多样性。从提取的视觉语义中计算各种多样性指数。它们被用来发现城市视觉外观和社会人口变量之间的关系。本研究还通过人工评估验证了该方法的可靠性。从本研究中获得的方法和结果可以潜在地用于研究城市特征、定位房屋、建立服务和更好地运营市政当局。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Social Science
Journal of Computational Social Science SOCIAL SCIENCES, MATHEMATICAL METHODS-
CiteScore
6.20
自引率
6.20%
发文量
30
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信