{"title":"A distributional approach to fractional Sobolev spaces and fractional variation: asymptotics I.","authors":"Giovanni E Comi, Giorgio Stefani","doi":"10.1007/s13163-022-00429-y","DOIUrl":null,"url":null,"abstract":"<p><p>We continue the study of the space <math><mrow><mi>B</mi> <msup><mi>V</mi> <mi>α</mi></msup> <mrow><mo>(</mo> <msup><mrow><mi>R</mi></mrow> <mi>n</mi></msup> <mo>)</mo></mrow> </mrow> </math> of functions with bounded fractional variation in <math> <msup><mrow><mi>R</mi></mrow> <mi>n</mi></msup> </math> of order <math><mrow><mi>α</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo></mrow> </math> introduced in our previous work (Comi and Stefani in J Funct Anal 277(10):3373-3435, 2019). After some technical improvements of certain results of Comi and Stefani (2019) which may be of some separated insterest, we deal with the asymptotic behavior of the fractional operators involved as <math><mrow><mi>α</mi> <mo>→</mo> <msup><mn>1</mn> <mo>-</mo></msup> </mrow> </math> . We prove that the <math><mi>α</mi></math> -gradient of a <math><msup><mi>W</mi> <mrow><mn>1</mn> <mo>,</mo> <mi>p</mi></mrow> </msup> </math> -function converges in <math><msup><mi>L</mi> <mi>p</mi></msup> </math> to the gradient for all <math><mrow><mi>p</mi> <mo>∈</mo> <mo>[</mo> <mn>1</mn> <mo>,</mo> <mo>+</mo> <mi>∞</mi> <mo>)</mo></mrow> </math> as <math><mrow><mi>α</mi> <mo>→</mo> <msup><mn>1</mn> <mo>-</mo></msup> </mrow> </math> . Moreover, we prove that the fractional <math><mi>α</mi></math> -variation converges to the standard De Giorgi's variation both pointwise and in the <math><mi>Γ</mi></math> -limit sense as <math><mrow><mi>α</mi> <mo>→</mo> <msup><mn>1</mn> <mo>-</mo></msup> </mrow> </math> . Finally, we prove that the fractional <math><mi>β</mi></math> -variation converges to the fractional <math><mi>α</mi></math> -variation both pointwise and in the <math><mi>Γ</mi></math> -limit sense as <math><mrow><mi>β</mi> <mo>→</mo> <msup><mi>α</mi> <mo>-</mo></msup> </mrow> </math> for any given <math><mrow><mi>α</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo></mrow> </math> .</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10147820/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13163-022-00429-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We continue the study of the space of functions with bounded fractional variation in of order introduced in our previous work (Comi and Stefani in J Funct Anal 277(10):3373-3435, 2019). After some technical improvements of certain results of Comi and Stefani (2019) which may be of some separated insterest, we deal with the asymptotic behavior of the fractional operators involved as . We prove that the -gradient of a -function converges in to the gradient for all as . Moreover, we prove that the fractional -variation converges to the standard De Giorgi's variation both pointwise and in the -limit sense as . Finally, we prove that the fractional -variation converges to the fractional -variation both pointwise and in the -limit sense as for any given .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.