Noninvasive Continuous Glucose Monitoring With a Novel Wearable Dial Resonating Sensor: A Clinical Proof-of-Concept Study.

IF 4.1 Q2 ENDOCRINOLOGY & METABOLISM
Consuelo Handy, Mohamed Sabih Chaudhry, Muhammad Rafaqat Ali Qureshi, Bradley Love, John Shillingford, Leona Plum-Mörschel, Eric Zijlstra
{"title":"Noninvasive Continuous Glucose Monitoring With a Novel Wearable Dial Resonating Sensor: A Clinical Proof-of-Concept Study.","authors":"Consuelo Handy, Mohamed Sabih Chaudhry, Muhammad Rafaqat Ali Qureshi, Bradley Love, John Shillingford, Leona Plum-Mörschel, Eric Zijlstra","doi":"10.1177/19322968231170242","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>A noninvasive, wearable continuous glucose monitor would be a major advancement in diabetes therapy. This trial investigated a novel noninvasive glucose monitor which analyzes spectral variations in radio frequency/microwave signals reflected from the wrist.</p><p><strong>Methods: </strong>A single-arm, open-label, experimental study compared glucose values from a prototype investigational device with laboratory glucose measurements from venous blood samples (Super GL Glucose Analyzer, Dr. Müller Gerätebau GmbH) at varying levels of glycemia. The study included 29 male participants with type 1 diabetes (age range = 19-56 years). The study comprised three stages with the following aims: (1) demonstrate initial proof-of-principle, (2) test an improved device design, and (3) test performance on two consecutive days without device recalibration. The co-primary endpoints in all trial stages were median and mean absolute relative difference (ARD) calculated across all data points.</p><p><strong>Results: </strong>In stage 1, the median and mean ARDs were 30% and 46%, respectively. Stage 2 produced marked performance improvements with a median and mean ARD of 22% and 28%, respectively. Stage 3 showed that, without recalibration, the device performed as well as the initial prototype (stage 1) with a median and mean ARD of 35% and 44%, respectively.</p><p><strong>Conclusion: </strong>This proof-of-concept study shows that a novel noninvasive continuous glucose monitor was capable of detecting glucose levels. Furthermore, the ARD results are comparable to first models of commercially available minimally invasive products without the need to insert a needle. The prototype has been further developed and is being tested in subsequent studies.</p><p><strong>Trial registration number: </strong>NCT05023798.</p>","PeriodicalId":15475,"journal":{"name":"Journal of Diabetes Science and Technology","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529082/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Diabetes Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/19322968231170242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: A noninvasive, wearable continuous glucose monitor would be a major advancement in diabetes therapy. This trial investigated a novel noninvasive glucose monitor which analyzes spectral variations in radio frequency/microwave signals reflected from the wrist.

Methods: A single-arm, open-label, experimental study compared glucose values from a prototype investigational device with laboratory glucose measurements from venous blood samples (Super GL Glucose Analyzer, Dr. Müller Gerätebau GmbH) at varying levels of glycemia. The study included 29 male participants with type 1 diabetes (age range = 19-56 years). The study comprised three stages with the following aims: (1) demonstrate initial proof-of-principle, (2) test an improved device design, and (3) test performance on two consecutive days without device recalibration. The co-primary endpoints in all trial stages were median and mean absolute relative difference (ARD) calculated across all data points.

Results: In stage 1, the median and mean ARDs were 30% and 46%, respectively. Stage 2 produced marked performance improvements with a median and mean ARD of 22% and 28%, respectively. Stage 3 showed that, without recalibration, the device performed as well as the initial prototype (stage 1) with a median and mean ARD of 35% and 44%, respectively.

Conclusion: This proof-of-concept study shows that a novel noninvasive continuous glucose monitor was capable of detecting glucose levels. Furthermore, the ARD results are comparable to first models of commercially available minimally invasive products without the need to insert a needle. The prototype has been further developed and is being tested in subsequent studies.

Trial registration number: NCT05023798.

利用新型可穿戴 Dial 共振传感器进行无创连续葡萄糖监测:临床概念验证研究。
背景:无创、可穿戴的连续葡萄糖监测仪将是糖尿病治疗的一大进步。本试验研究了一种新型无创血糖监测仪,它能分析手腕反射的射频/微波信号的频谱变化:单臂、开放标签实验研究比较了原型研究设备与实验室静脉血样本葡萄糖测量值(Super GL 葡萄糖分析仪,Dr. Müller Gerätebau GmbH)在不同血糖水平下的葡萄糖测量值。这项研究包括 29 名患有 1 型糖尿病的男性参与者(年龄在 19-56 岁之间)。研究分为三个阶段,目的如下:(1) 展示初步原理验证,(2) 测试改进后的设备设计,(3) 在不重新校准设备的情况下连续两天测试性能。所有试验阶段的共同主要终点是计算所有数据点的绝对相对差值(ARD)的中位数和平均值:在第一阶段,ARD 的中位数和平均值分别为 30% 和 46%。第 2 阶段的绩效明显改善,ARD 的中位数和平均值分别为 22% 和 28%。第 3 阶段显示,在没有重新校准的情况下,设备的性能与最初的原型(第 1 阶段)相当,ARD 的中位数和平均值分别为 35% 和 44%:这项概念验证研究表明,新型无创连续葡萄糖监测仪能够检测葡萄糖水平。此外,ARD 结果与市场上第一款无需插入针头的微创产品相当。该原型已得到进一步开发,并正在后续研究中进行测试:试验注册号:NCT05023798。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Diabetes Science and Technology
Journal of Diabetes Science and Technology Medicine-Internal Medicine
CiteScore
7.50
自引率
12.00%
发文量
148
期刊介绍: The Journal of Diabetes Science and Technology (JDST) is a bi-monthly, peer-reviewed scientific journal published by the Diabetes Technology Society. JDST covers scientific and clinical aspects of diabetes technology including glucose monitoring, insulin and metabolic peptide delivery, the artificial pancreas, digital health, precision medicine, social media, cybersecurity, software for modeling, physiologic monitoring, technology for managing obesity, and diagnostic tests of glycation. The journal also covers the development and use of mobile applications and wireless communication, as well as bioengineered tools such as MEMS, new biomaterials, and nanotechnology to develop new sensors. Articles in JDST cover both basic research and clinical applications of technologies being developed to help people with diabetes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信