Data Science Issues in Studying Protein-RNA Interactions with CLIP Technologies.

IF 7 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Anob M Chakrabarti, Nejc Haberman, Arne Praznik, Nicholas M Luscombe, Jernej Ule
{"title":"Data Science Issues in Studying Protein-RNA Interactions with CLIP Technologies.","authors":"Anob M Chakrabarti, Nejc Haberman, Arne Praznik, Nicholas M Luscombe, Jernej Ule","doi":"10.1146/annurev-biodatasci-080917-013525","DOIUrl":null,"url":null,"abstract":"<p><p>An interplay of experimental and computational methods is required to achieve a comprehensive understanding of protein-RNA interactions. UV crosslinking and immunoprecipitation (CLIP) identifies endogenous interactions by sequencing RNA fragments that copurify with a selected RNA-binding protein under stringent conditions. Here we focus on approaches for the analysis of the resulting data and appraise the methods for peak calling, visualization, analysis, and computational modeling of protein-RNA binding sites. We advocate that the sensitivity and specificity of data be assessed in combination for computational quality control. Moreover, we demonstrate the value of analyzing sequence motif enrichment in peaks assigned from CLIP data and of visualizing RNA maps, which examine the positional distribution of peaks around regulated landmarks in transcripts. We use these to assess how variations in CLIP data quality and in different peak calling methods affect the insights into regulatory mechanisms. We conclude by discussing future opportunities for the computational analysis of protein-RNA interaction experiments.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":"1 1","pages":"235-261"},"PeriodicalIF":7.0000,"publicationDate":"2018-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614488/pdf/EMS174063.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-biodatasci-080917-013525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

An interplay of experimental and computational methods is required to achieve a comprehensive understanding of protein-RNA interactions. UV crosslinking and immunoprecipitation (CLIP) identifies endogenous interactions by sequencing RNA fragments that copurify with a selected RNA-binding protein under stringent conditions. Here we focus on approaches for the analysis of the resulting data and appraise the methods for peak calling, visualization, analysis, and computational modeling of protein-RNA binding sites. We advocate that the sensitivity and specificity of data be assessed in combination for computational quality control. Moreover, we demonstrate the value of analyzing sequence motif enrichment in peaks assigned from CLIP data and of visualizing RNA maps, which examine the positional distribution of peaks around regulated landmarks in transcripts. We use these to assess how variations in CLIP data quality and in different peak calling methods affect the insights into regulatory mechanisms. We conclude by discussing future opportunities for the computational analysis of protein-RNA interaction experiments.

Abstract Image

Abstract Image

Abstract Image

利用 CLIP 技术研究蛋白质-RNA 相互作用的数据科学问题。
要全面了解蛋白质与 RNA 的相互作用,需要实验和计算方法的相互作用。紫外交联和免疫沉淀(CLIP)通过对在严格条件下与所选 RNA 结合蛋白共聚的 RNA 片段进行测序,来确定内源相互作用。在此,我们重点介绍分析所得数据的方法,并对蛋白质-RNA 结合位点的峰值调用、可视化、分析和计算建模方法进行评估。我们主张结合评估数据的灵敏度和特异性来进行计算质量控制。此外,我们还展示了分析根据 CLIP 数据分配的峰中序列主题富集的价值,以及 RNA 地图可视化的价值,RNA 地图可检查转录本中调控地标周围峰的位置分布。我们利用这些方法来评估 CLIP 数据质量和不同峰值调用方法的变化如何影响对调控机制的洞察。最后,我们讨论了对蛋白质-RNA 相互作用实验进行计算分析的未来机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.10
自引率
1.70%
发文量
0
期刊介绍: The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信