Anob M Chakrabarti, Nejc Haberman, Arne Praznik, Nicholas M Luscombe, Jernej Ule
{"title":"Data Science Issues in Studying Protein-RNA Interactions with CLIP Technologies.","authors":"Anob M Chakrabarti, Nejc Haberman, Arne Praznik, Nicholas M Luscombe, Jernej Ule","doi":"10.1146/annurev-biodatasci-080917-013525","DOIUrl":null,"url":null,"abstract":"<p><p>An interplay of experimental and computational methods is required to achieve a comprehensive understanding of protein-RNA interactions. UV crosslinking and immunoprecipitation (CLIP) identifies endogenous interactions by sequencing RNA fragments that copurify with a selected RNA-binding protein under stringent conditions. Here we focus on approaches for the analysis of the resulting data and appraise the methods for peak calling, visualization, analysis, and computational modeling of protein-RNA binding sites. We advocate that the sensitivity and specificity of data be assessed in combination for computational quality control. Moreover, we demonstrate the value of analyzing sequence motif enrichment in peaks assigned from CLIP data and of visualizing RNA maps, which examine the positional distribution of peaks around regulated landmarks in transcripts. We use these to assess how variations in CLIP data quality and in different peak calling methods affect the insights into regulatory mechanisms. We conclude by discussing future opportunities for the computational analysis of protein-RNA interaction experiments.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":"1 1","pages":"235-261"},"PeriodicalIF":7.0000,"publicationDate":"2018-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614488/pdf/EMS174063.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-biodatasci-080917-013525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
An interplay of experimental and computational methods is required to achieve a comprehensive understanding of protein-RNA interactions. UV crosslinking and immunoprecipitation (CLIP) identifies endogenous interactions by sequencing RNA fragments that copurify with a selected RNA-binding protein under stringent conditions. Here we focus on approaches for the analysis of the resulting data and appraise the methods for peak calling, visualization, analysis, and computational modeling of protein-RNA binding sites. We advocate that the sensitivity and specificity of data be assessed in combination for computational quality control. Moreover, we demonstrate the value of analyzing sequence motif enrichment in peaks assigned from CLIP data and of visualizing RNA maps, which examine the positional distribution of peaks around regulated landmarks in transcripts. We use these to assess how variations in CLIP data quality and in different peak calling methods affect the insights into regulatory mechanisms. We conclude by discussing future opportunities for the computational analysis of protein-RNA interaction experiments.
期刊介绍:
The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.