{"title":"Sociogenesis in unbounded space: modelling self-organised cohesive collective motion.","authors":"Zohar Neu, Luca Giuggioli","doi":"10.1088/1478-3975/acc4ff","DOIUrl":null,"url":null,"abstract":"<p><p>Maintaining cohesion between randomly moving agents in unbounded space is an essential functionality for many real-world applications requiring distributed multi-agent systems. We develop a bio-inspired collective movement model in 1D unbounded space to ensure such functionality. Using an internal agent belief to estimate the mesoscopic state of the system, agent motion is coupled to a dynamically self-generated social ranking variable. This coupling between social information and individual movement is exploited to induce spatial self-sorting and produces an adaptive, group-relative coordinate system that stabilises random motion in unbounded space. We investigate the state-space of the model in terms of its key control parameters and find two separate regimes for the system to attain dynamical cohesive states, including a Partial Sensing regime in which the system self-selects nearest-neighbour distances so as to ensure a near-constant mean number of sensed neighbours. Overall, our approach constitutes a novel theoretical development in models of collective movement, as it considers agents who make decisions based on internal representations of their social environment that explicitly take into account spatial variation in a dynamic internal variable.</p>","PeriodicalId":20207,"journal":{"name":"Physical biology","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7616385/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1088/1478-3975/acc4ff","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Maintaining cohesion between randomly moving agents in unbounded space is an essential functionality for many real-world applications requiring distributed multi-agent systems. We develop a bio-inspired collective movement model in 1D unbounded space to ensure such functionality. Using an internal agent belief to estimate the mesoscopic state of the system, agent motion is coupled to a dynamically self-generated social ranking variable. This coupling between social information and individual movement is exploited to induce spatial self-sorting and produces an adaptive, group-relative coordinate system that stabilises random motion in unbounded space. We investigate the state-space of the model in terms of its key control parameters and find two separate regimes for the system to attain dynamical cohesive states, including a Partial Sensing regime in which the system self-selects nearest-neighbour distances so as to ensure a near-constant mean number of sensed neighbours. Overall, our approach constitutes a novel theoretical development in models of collective movement, as it considers agents who make decisions based on internal representations of their social environment that explicitly take into account spatial variation in a dynamic internal variable.
期刊介绍:
Physical Biology publishes articles in the broad interdisciplinary field bridging biology with the physical sciences and engineering. This journal focuses on research in which quantitative approaches – experimental, theoretical and modeling – lead to new insights into biological systems at all scales of space and time, and all levels of organizational complexity.
Physical Biology accepts contributions from a wide range of biological sub-fields, including topics such as:
molecular biophysics, including single molecule studies, protein-protein and protein-DNA interactions
subcellular structures, organelle dynamics, membranes, protein assemblies, chromosome structure
intracellular processes, e.g. cytoskeleton dynamics, cellular transport, cell division
systems biology, e.g. signaling, gene regulation and metabolic networks
cells and their microenvironment, e.g. cell mechanics and motility, chemotaxis, extracellular matrix, biofilms
cell-material interactions, e.g. biointerfaces, electrical stimulation and sensing, endocytosis
cell-cell interactions, cell aggregates, organoids, tissues and organs
developmental dynamics, including pattern formation and morphogenesis
physical and evolutionary aspects of disease, e.g. cancer progression, amyloid formation
neuronal systems, including information processing by networks, memory and learning
population dynamics, ecology, and evolution
collective action and emergence of collective phenomena.