{"title":"A reliable elasticity sensing method for analysis of cell entosis using microfluidic cytometer.","authors":"Jifeng Ren, Lei Fan","doi":"10.1007/s13534-023-00264-0","DOIUrl":null,"url":null,"abstract":"<p><p>Cell entosis is a novel cell death process starting from cell-in-cell invasion. In general, cancer cells own higher incidence rate of cell entosis comparing to non-cancerous cells. Studies arguing whether cell entosis is a tumor suppressing process or a tumor accelerating process can deepen our understanding of tumor development. Cell elasticity is recognized as one of tumor malignant biomarkers. There have been some researchers studying cell elasticity in cell entosis. However, existing cell elasticity sensing technique (i.e. micropipette aspiration) can hardly be reliable neither high-throughput. In this work, we introduce an elasticity sensing method for quantifying both cell elasticity in cell-in-cell structures and single floating cells using a microfluidic cytometer. We not only argue our cell elasticity sensing method is reliable for already occurred entosis but also apply such method on predicting the \"outer\" cells in entosis of different cell types. The elasticity sensing method proposed in this manuscript is able to provide an effective and reliable way to further study deeper mechanism in cell entosis.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13534-023-00264-0.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"13 2","pages":"175-183"},"PeriodicalIF":3.2000,"publicationDate":"2023-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130291/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13534-023-00264-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cell entosis is a novel cell death process starting from cell-in-cell invasion. In general, cancer cells own higher incidence rate of cell entosis comparing to non-cancerous cells. Studies arguing whether cell entosis is a tumor suppressing process or a tumor accelerating process can deepen our understanding of tumor development. Cell elasticity is recognized as one of tumor malignant biomarkers. There have been some researchers studying cell elasticity in cell entosis. However, existing cell elasticity sensing technique (i.e. micropipette aspiration) can hardly be reliable neither high-throughput. In this work, we introduce an elasticity sensing method for quantifying both cell elasticity in cell-in-cell structures and single floating cells using a microfluidic cytometer. We not only argue our cell elasticity sensing method is reliable for already occurred entosis but also apply such method on predicting the "outer" cells in entosis of different cell types. The elasticity sensing method proposed in this manuscript is able to provide an effective and reliable way to further study deeper mechanism in cell entosis.
Supplementary information: The online version contains supplementary material available at 10.1007/s13534-023-00264-0.
期刊介绍:
Biomedical Engineering Letters (BMEL) aims to present the innovative experimental science and technological development in the biomedical field as well as clinical application of new development. The article must contain original biomedical engineering content, defined as development, theoretical analysis, and evaluation/validation of a new technique. BMEL publishes the following types of papers: original articles, review articles, editorials, and letters to the editor. All the papers are reviewed in single-blind fashion.