Siting Yang, Ke Xu, Shouliang Guan, Liang Zou, Lei Gao, Jinfen Wang, Huihui Tian, Hui Li, Ying Fang, Hongbian Li
{"title":"Polymer nanofiber network reinforced gold electrode array for neural activity recording.","authors":"Siting Yang, Ke Xu, Shouliang Guan, Liang Zou, Lei Gao, Jinfen Wang, Huihui Tian, Hui Li, Ying Fang, Hongbian Li","doi":"10.1007/s13534-022-00257-5","DOIUrl":null,"url":null,"abstract":"<p><p>Flexible and stretchable neural electrodes are promising tools for high-fidelity interfacing with soft and curvilinear brain surface. Here, we describe a flexible and stretchable neural electrode array that consists of polyacrylonitrile (PAN) nanofiber network reinforced gold (Au) film electrodes. Under stretching, the interweaving PAN nanofibers effectively terminate the formation of propagating cracks in the Au films and thus enable the formation of a dynamically stable electrode-tissue interface. Moreover, the PAN nanofibers increase the surface roughness and active surface areas of the Au electrodes, leading to reduced electrochemical impedance and improved signal-to-noise ratio. As a result, PAN nanofiber network reinforced Au electrode arrays can allow for reliable in vivo multichannel recording of epileptiform activities in rats.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13534-022-00257-5.</p>","PeriodicalId":46898,"journal":{"name":"Biomedical Engineering Letters","volume":"13 2","pages":"111-118"},"PeriodicalIF":3.2000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10130319/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13534-022-00257-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Flexible and stretchable neural electrodes are promising tools for high-fidelity interfacing with soft and curvilinear brain surface. Here, we describe a flexible and stretchable neural electrode array that consists of polyacrylonitrile (PAN) nanofiber network reinforced gold (Au) film electrodes. Under stretching, the interweaving PAN nanofibers effectively terminate the formation of propagating cracks in the Au films and thus enable the formation of a dynamically stable electrode-tissue interface. Moreover, the PAN nanofibers increase the surface roughness and active surface areas of the Au electrodes, leading to reduced electrochemical impedance and improved signal-to-noise ratio. As a result, PAN nanofiber network reinforced Au electrode arrays can allow for reliable in vivo multichannel recording of epileptiform activities in rats.
Supplementary information: The online version contains supplementary material available at 10.1007/s13534-022-00257-5.
期刊介绍:
Biomedical Engineering Letters (BMEL) aims to present the innovative experimental science and technological development in the biomedical field as well as clinical application of new development. The article must contain original biomedical engineering content, defined as development, theoretical analysis, and evaluation/validation of a new technique. BMEL publishes the following types of papers: original articles, review articles, editorials, and letters to the editor. All the papers are reviewed in single-blind fashion.