Construction of extended and functional bile canaliculi using long-term sandwich-cultured cryopreserved human hepatocytes and the application of hepatocytes for predicting the biliary excretion of pharmaceutical and food-related compounds.
{"title":"Construction of extended and functional bile canaliculi using long-term sandwich-cultured cryopreserved human hepatocytes and the application of hepatocytes for predicting the biliary excretion of pharmaceutical and food-related compounds.","authors":"Takashi Kitaguchi, Shinichiro Horiuchi, Yukie Kuroda, Katsutoshi Ohno, Kazuhiro Kobayashi, Mitsuru Tanaka, Seiichi Ishida","doi":"10.2131/jts.48.251","DOIUrl":null,"url":null,"abstract":"<p><p>The biliary excretion of pharmaceutical and food-related compounds is an important factor for assessing pharmacokinetics and toxicities in humans, and a highly predictive in vitro method for human biliary excretion is required. We have developed a simple in vitro culture method for generating extended and functional bile canaliculi using cryopreserved human hepatocytes. We evaluated the uptake of compounds by hepatocytes and bile canaliculi, and the biliary excretion index (BEI) was calculated. After 21 days of culture, the presence of extended and functional bile canaliculi was confirmed by the uptake of two fluorescent substrates. Positive BEIs were observed for taurocholic acid-d<sub>4</sub>, rosuvastatin, pitavastatin, pravastatin, valsartan, olmesartan, and topotecan (reported biliary-excreted compounds in humans), but no difference in BEI was observed for salicylic acid (a nonbiliary-excreted compound). Furthermore, 8 of 21 food-related compounds with specific structures and reported biliary transporter involvement exhibited positive BEIs. The developed in vitro system was characterized by functional bile canaliculus-like structures, and it could be applied to the prediction of the biliary excretion of pharmaceutical and food-related compounds.</p>","PeriodicalId":17654,"journal":{"name":"Journal of Toxicological Sciences","volume":"48 5","pages":"251-261"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2131/jts.48.251","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
The biliary excretion of pharmaceutical and food-related compounds is an important factor for assessing pharmacokinetics and toxicities in humans, and a highly predictive in vitro method for human biliary excretion is required. We have developed a simple in vitro culture method for generating extended and functional bile canaliculi using cryopreserved human hepatocytes. We evaluated the uptake of compounds by hepatocytes and bile canaliculi, and the biliary excretion index (BEI) was calculated. After 21 days of culture, the presence of extended and functional bile canaliculi was confirmed by the uptake of two fluorescent substrates. Positive BEIs were observed for taurocholic acid-d4, rosuvastatin, pitavastatin, pravastatin, valsartan, olmesartan, and topotecan (reported biliary-excreted compounds in humans), but no difference in BEI was observed for salicylic acid (a nonbiliary-excreted compound). Furthermore, 8 of 21 food-related compounds with specific structures and reported biliary transporter involvement exhibited positive BEIs. The developed in vitro system was characterized by functional bile canaliculus-like structures, and it could be applied to the prediction of the biliary excretion of pharmaceutical and food-related compounds.
期刊介绍:
The Journal of Toxicological Sciences (J. Toxicol. Sci.) is a scientific journal that publishes research about the mechanisms and significance of the toxicity of substances, such as drugs, food additives, food contaminants and environmental pollutants. Papers on the toxicities and effects of extracts and mixtures containing unidentified compounds cannot be accepted as a general rule.