{"title":"A Bayesian model to identify multiple expression patterns with simultaneous FDR control for a multi-factor RNA-seq experiment.","authors":"Yuanyuan Bian, Chong He, Jing Qiu","doi":"10.1515/sagmb-2022-0025","DOIUrl":null,"url":null,"abstract":"<p><p>It is often of research interest to identify genes that satisfy a particular expression pattern across different conditions such as tissues, genotypes, etc. One common practice is to perform differential expression analysis for each condition separately and then take the intersection of differentially expressed (DE) genes or non-DE genes under each condition to obtain genes that satisfy a particular pattern. Such a method can lead to many false positives, especially when the desired gene expression pattern involves equivalent expression under one condition. In this paper, we apply a Bayesian partition model to identify genes of all desired patterns while simultaneously controlling their false discovery rates (FDRs). Our simulation studies show that the common practice fails to control group specific FDRs for patterns involving equivalent expression while the proposed Bayesian method simultaneously controls group specific FDRs at all settings studied. In addition, the proposed method is more powerful when the FDR of the common practice is under control for identifying patterns only involving DE genes. Our simulation studies also show that it is an inherently more challenging problem to identify patterns involving equivalent expression than patterns only involving differential expression. Therefore, larger sample sizes are required to obtain the same target power to identify the former types of patterns than the latter types of patterns.</p>","PeriodicalId":49477,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2022-0025","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
It is often of research interest to identify genes that satisfy a particular expression pattern across different conditions such as tissues, genotypes, etc. One common practice is to perform differential expression analysis for each condition separately and then take the intersection of differentially expressed (DE) genes or non-DE genes under each condition to obtain genes that satisfy a particular pattern. Such a method can lead to many false positives, especially when the desired gene expression pattern involves equivalent expression under one condition. In this paper, we apply a Bayesian partition model to identify genes of all desired patterns while simultaneously controlling their false discovery rates (FDRs). Our simulation studies show that the common practice fails to control group specific FDRs for patterns involving equivalent expression while the proposed Bayesian method simultaneously controls group specific FDRs at all settings studied. In addition, the proposed method is more powerful when the FDR of the common practice is under control for identifying patterns only involving DE genes. Our simulation studies also show that it is an inherently more challenging problem to identify patterns involving equivalent expression than patterns only involving differential expression. Therefore, larger sample sizes are required to obtain the same target power to identify the former types of patterns than the latter types of patterns.
期刊介绍:
Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.